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Social networks have emerged as an important channel for brands to communicate 

with customers both directly as well as secondarily through customers who share the 

communications with others. A value of this channel to brands, therefore, depends on how 

effective they are in increasing the retransmission of their messages by customers. This is 

the issue that we investigate through three essays using the social media site Twitter as our 

research setting. Our investigation is based on the theory that retweeting is a choice made 

by consumers who rely on constructive preferences (Bettman, Luce and Payne 1998) while 

seeking three intangible benefits: altruism, self-enhancement, and social interaction. They 

also have two overarching metagoals of accuracy maximization and effort minimization 

(Bettman et al 1998) as they seek the benefits. Within this theoretical context, we examine 

the design attributes of tweets that increase retweeting. Specifically, we investigate more 

than 14000 tweets by 62 brands, across four product categories, over periods ranging from 

18 to 400 days. Our empirical results are consistent with the theory and suggest that brand 
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and tweet characteristics that increase the recipients’ ability to maximize the benefits of 

retweeting, and minimize the cognitive effort required to decide whether to retweet or not, 

increase retweets. The key managerial implication of our findings therefore is that brands 

should design tweets carefully to increase altruism, self-enhancement, and social interaction 

benefits while reducing the amount of effort that recipients need to undertake to assess 

whether the tweet offers these benefits. We replicate and extend these findings in essay two 

in the context of celebrities as brands by investigating the volume and duration of retweets 

of more than 2900 tweets by 65 celebrities across seven categories of the entertainment 

industry. Our results from this essay suggest that traits of the sources, i.e., the celebrities, 

also play a role in how recipients assess whether a tweet can deliver the three benefits while 

realizing the two metagoals. The third essay focuses on brands’ desire to generate retweets 

at a rapid rate before the tweet loses its relevance. In addition to volume and duration, 

therefore, we also investigate the rate at which a tweet is retweeted in this essay. Our 

investigation examines the retweet rates, in fifteen minutes intervals over a 24-hour period, 

of more than 2400 tweets posted by 62 celebrities using a Modulate Poisson Process model 

(Soyer and Tarimcilar 2008). Our results suggest that tweets that do not need recipients to 

interact with them and are related to significant cultural events are retweeted at a faster rate 

than others.    
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1. Essay 1: Constructive Preferences and the Retransmission of Tweets 

 

1.1. Introduction 

Over the past few years, social media have evolved into a medium where brands and 

consumers interact. Most brands therefore maintain a presence and build their social 

networks on popular social media like Twitter and Facebook. Media reports (Huffington 

Post 2014) suggest that almost all of the Fortune 500 firms have accounts on Twitter. In 

fact, most of these firms have about six accounts each (Malhotra et al 2012).   

While the primary goal of brands is to interact with customers, an equally important 

objective is to stimulate conversations about their products. Such consumer-to-consumer 

conversations can be more effective and less expensive than traditional advertising 

campaigns (Fournier and Avery 2011) since they serve as electronic word of mouth that 

implicitly endorses the brand (Malhotra et al 2012). Brands attempt to stimulate 

conversations by seeding (Deighton and Kornfeld 2009, Schau, Muñiz and Arnould 2009, 

Singh and Sonnenburg 2012) the network with announcements, promotional offers, 

contests and events (Muniz and Schau 2011) or any other topic that might be of interest to 

participants. For instance, the fast-food brand Arby’s sent out a tweet (Figure 1.1) during 

the Grammy awards ceremony connecting the hat worn by the popular singer Pharrell to 

the hat in its logo (Time 2014). The tweet was retweeted over eighty thousand times 

attracting in the process a retweet from the singer which was again retweeted over sixteen 

thousand times (AdWeek 2014a). Arby’s subsequently bought the hat from the singer who 
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donated the proceeds to charity, which stimulated an additional forty thousand references 

to the brand on Twitter (AdWeek 2014b).   

 
Figure 1.1 – Tweet posted by Arby’s about Grammys 

The enormous success of Arby’s tweet, however, is an exception. Typically, tweets 

from brands attract far fewer retweets and the average number of retweets is only about 25 

(Malhotra et al 2012). Brands, therefore, need insights into what motivates their followers 

on social media to retransmit their communications. Such insights can be useful in crafting 

messages that customers will share and, thus, help brands take advantage of social media 

for communications and promotions. Surprisingly, although there is substantial research in 

the literature on virality (Berger and Milkman 2012, Schulze, Schöler and Skiera 2014) 

and discussions of brands and categories by consumers on social media (Lovett, Peres, and 

Shachar 2013), there is little research as yet on why messages from brands to customers 

are shared with others. In particular, questions related to characteristics of messages from 

brands that lend themselves to retransmission by consumers in social media have not yet 

been researched. This is the issue that we investigate using the social media platform 

Twitter and tweets by brands to customers as our research setting.   

Our investigation is based on the theory that retweeting is a choice made by 

consumers based on whether doing so allows them to reach specific goals (Bettman et al 

1998). Multiple characteristics of this choice task, however, distinguish it from product or 
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brand choice decisions investigated in the literature (e.g., Guadagni and Little 1983, Hoyer 

and Brown 1990, McFadden 1990) and make it a goal-based rather than a utility-based 

decision. Specifically, since tweets are neither products nor brands, consumers will neither 

have well-defined preferences among tweets nor the ability to identify tweets that would 

give them greater utility from retweeting than not doing so. Consequently, their preferences 

would be constructive (Bettman, Luce and Payne 1998) and retweeting choices are likely 

to be made to realize one or more goals. First, consumers, seek several intangible benefits 

such as self-enhancement (De Angelis et al 2012), altruism (Hennig-Thurau et al 2004), 

and social interaction (Lovett, Peres and Shachar 2013) from retweeting. The goal in this 

case would therefore be to maximize the accuracy of their retweeting decision in realizing 

those benefits. Second, consumers receive a large number of tweets from brands1 but, 

typically, do not realize any tangible benefits from retweeting. Their involvement and, 

hence, the willingness to put in much cognitive effort into the retweeting decision is 

therefore likely to be low. Thus, the goal would be to minimize the cognitive effort 

expended. The retweeting decision will therefore be taken to realize the two metagoals of 

accuracy maximization and effort minimization (Bettman, Luce and Payne 1998), rather 

than based on utility. Consequently, consumers are more likely to retweet those tweets that 

allow them to realize these metagoals.   

We test our theory on the role of metagoals by empirically investigating the 

retweeting response to tweets in four product categories: automotive, food and beverage, 

dining and airline. In each category, we consider the top twenty brands, in terms of the 

number of consumers that follow them on Twitter. For each brand, we investigate 

                                                 
1 For instance, Starbucks sends about ten tweets on average per day (Hassan Zadeh and Sharda 2014). 
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retweeting behavior with regard to 500 of its most recent tweets as of the date on which we 

collected the data2. The ability of a tweet to help the recipient maximize accuracy, while 

minimizing effort, in realizing the intangible benefits of social interaction, altruism, and 

self-enhancement is operationalized in terms of brand and tweet characteristics. For 

instance, the ability of a brand’s tweet to provide social interaction benefits is 

operationalized through the number of followers of the brand on Twitter and on other social 

media sites like Facebook. Similarly, a tweet’s ability to provide altruistic benefits to the 

recipient is operationalized through the presence of characters related to monetary benefits 

such as a dollar sign, references to a promotion or to taking advantage of one in the near 

future. The characteristics of tweets that help recipients take a decision on retweeting 

without undertaking extensive effort are captured through the presence of characters like 

hash tags and exclamation marks and the length in terms of number of characters included. 

Our empirical results are consistent with the theory and suggest that the retweeting 

decision is based on whether a tweet meets the two metagoals of accuracy maximization 

and effort minimization. Specifically, brand and tweet characteristics that increase the 

recipients’ ability to maximize the benefits of retweeting and minimize the cognitive effort 

required to take the decision on whether or not to retweet increase the total number of 

retweets. The key managerial implication of our findings therefore is that, in order to 

increase the re-transmission of their tweets, brands should design tweets carefully such that 

they increase social interaction, altruism and self-enhancement benefits while reducing the 

amount of effort that recipients need to undertake to assess tweet’s benefits. 

                                                 
2 We collected our data on April 1, 2012.   
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We next provide an overview of the theory and follow with a description of our data. 

Following this, we present our model and empirical results. The chapter concludes with a 

discussion of the managerial implications and directions for future research. 

1.2. Background and Theory 

1.2.1. Background 

Findings in the literature on choice over many decades (e.g., Guadagni and Little 

1983, McFadden 1973, 2001) confirm that individuals make choices based on the 

perceived utilities of the options, and that choice behavior “can be characterized by a 

decision process which is informed by perceptions and beliefs based on available 

information, and is influenced by affect, attitudes, motives and preferences” (Ben-Akiva et 

al 1999, p. 188).   

Retweeting is a choice made by individuals who receive tweets. Since individuals 

make choices regarding what actions to take based on the utility they realize from those 

actions, whether members of a brand’s network retransmit or propagate messages depends 

on whether they conclude that retweeting provides a higher utility than being a passive 

recipient. Importantly, the utility of retransmission is intangible since the transmitter is 

neither paid nor realizes any other material benefit by transmitting a message from a brand. 

For example, Toubia and Stephen (2013) demonstrate that individuals are primarily 

motivated by two types of intangible utilities to contribute to Twitter: intrinsic and image.   

The literature suggests several additional intangible benefits that motivate 

transmission: self-enhancement (De Angelis et al 2012), altruism (Hennig-Thurau et al 

2004), and social interaction (Lovett, Peres and Shachar 2013). Further the magnitude of 
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these benefits is greater when the number of others who may be interested in the message 

that the recipient can broadcast it to. For instance, Berger and Milkman (2012) (the 

narrowcasting vs broadcasting paper) suggest that “self-presentation motives, identity 

signaling (e.g., Berger and Heath 2007), or affiliation goals may play a stronger role in 

shaping what people share with larger audiences.” 

Our main thesis is that recipients of a message from a brand decide on whether or 

not to transmit it based on whether or not it provides any intangible utility and how big that 

utility is. As suggested by Berger and Milkman (2012), the benefits that they are most 

interested in should be self-enhancement and altruism since, being altruistic, increases their 

affiliation with the recipients who would feel obligated. For instance, a message that is 

more general about a category (e.g., autos) has greater utility of retransmission than one 

that is specifically about a brand in terms of how many recipients it can be forwarded to. 

Thus, categories to which brands belong to may play a bigger role than brands since the 

number of people interested in a category is always larger than the number interested in a 

brand of the category.   

1.2.2. Theory 

To assess the utility of retweeting, individuals need to evaluate the benefits that can 

be derived from a tweet. Tweets, however, are not well defined choice options due to many 

reasons. First, they are only 140 characters in length and short. Hence, their emotional 

content and, hence, their potential contribution to self-enhancement or altruism is difficult 

to evaluate. Further, the content of tweets is not predefined and no two tweets may be alike 

since, if they were, tweeters would not be sending multiple tweets. Hence, individuals 



www.manaraa.com

7 

 

cannot have a well-defined and rehearsed judgment process to evaluate each tweet. 

Consequently, individuals would have to rely on a constructive choice process (Bettman et 

al 1998) to assess the utility of retweeting a tweet. 

The key difference between the classic and constructive view of preferences is that 

the former assumes that consumers have a “master list of preferences in memory when 

making a choice” (Bettman et al 1998, p.188) and also that “they apply some invariant 

algorithm such as a weighted adding model” (Bettman et al 1998, p.188) to evaluate choice 

options and select one. In contrast, the constructive view of preferences argues that 

consumers may not always have well-defined and rehearsed preferences for choice options. 

Instead, they may construct their preferences on the spot when confronted with the options. 

This is particularly likely when either the number of options is large or the knowledge of 

the options and the choice task is low. In addition to constructing preferences “on the fly” 

(Bettman et al 1998, p.188), decision-makers may also construct their approaches to 

evaluation on the fly. Thus, rather than carefully considering all the features of all the 

presented options, they may follow simple “algorithms” (Bettman et al 1998) such as 

choosing an option based on whether or not it has the best value on the most important 

criterion or a lexicographic decision-strategy. Alternatively, they may arrive at a choice 

based on some metagoals, which focus on realizing objectives other than utility 

maximization.   

Bettman et al (1998) suggest four metagoals: 

1. Maximizing the accuracy of a decision 

2. Minimizing the cognitive effort required for the decision 

3. Minimizing the experience of negative emotion while making the decision 
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4. Maximizing the ease with which a decision can be justified to others or to 

one’s self 

Bettman et al (1998) also discuss how different goals may become more prominent in 

different situations. In the case of irreversible actions of high importance, for instance, 

maximizing the accuracy of the decision, minimizing the experience of negative emotion, 

and maximizing the ease with which a decision can be justified to others or one’s self may 

dominate. On the other hand, in situations where there is little involvement or extensive 

need to justify, maximizing the accuracy of the decision and minimizing the cognitive 

effort required may become the dominant goals (Beach and Mitchell 1978, Bettman et al 

1998, Hogarth 1987, Payne, Bettman, and Johnson 1993, Shugan 1980) 

We suggest that retweeting falls into the class of decisions where there is little 

involvement on the part of the consumer or extensive need to justify for multiple reasons. 

One, individuals receive multiple tweets per day. Hence, evaluating each tweet to decide 

whether to retweet would require substantial cognitive effort and time. Two, social media 

and the benefits from being active there is only one of the many tasks that individuals have 

during the day. Further, spending time on social media is a discretionary rather than a 

required activity like work. Three, retweeting a brand’s tweet is neither a critical nor an 

irreversible decision with major consequences. Therefore, recipients are unlikely to want 

to put in extensive effort into the process of deciding which ones to transmit and which 

ones to passively react to. Overall, therefore, consumers would wish to minimize their 

effort but maximize the returns on that investment in terms of the accuracy in realizing the 

three benefits mentioned previously, i.e., self-enhancement, altruism, and social 

interaction. We briefly discuss below how specific characteristics of the brand or the tweet 
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could help consumers increase the accuracy in realizing these benefits while minimizing 

their effort. 

Accuracy in realizing the benefits can be achieved by relying on cues in the message 

to judge whether further transmission is likely to provide utility. The message cues are: 

1. The brand itself - more popular brands may attract more attention from recipients and, 

hence, result in higher social interaction. This can be operationalized as the number of 

members in the social media networks of the brand, and how the network is growing. 

2. The category itself – categories that are of interest to a greater number of people may 

attract more attention and hence increase the social interaction 

3. The presence of characters or words that may indicate tangible benefits to recipients of 

the retweet can increase the benefits of altruism by retweeting. These include:  

a. Words related to promotions 

b. Presence of a $ sign 

c. Time related – sense of urgency indicating a promotion 

d. Action oriented words – “act now”, “take advantage” – again indicating a 

promotion or a potential benefit 

4. The presence of characters or words that may indicate intangible benefits to recipients 

of the retweet can increase the benefits of self-enhancement by retweeting. These 

include:  

a. Presence of words indicating an event  

b. Presence of a link to additional content that the recipients may benefit from 

c. Presence of words related to the brand 
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The goal of effort minimization can be achieved by looking for the presence of 

specific characters in the tweet that serve as cues to the effort required, or effort that can 

avoided, to evaluate them. Characters that reduce the effort required to evaluate include: 

1. The hashtag which makes it easier to decide whether or not the subject of the tweet 

would be of interest to recipients 

2. Explicit request by the brand to retweet as indicated by the presence of the phrase 

“RT_if”  

3. Presence of an exclamation mark suggesting something interesting 

Effort minimization can also be achieved by relying on cues that suggest increased 

effort to retweet as a means of deciding not to retweet. These cues include 

1. Presence of blanks that need to be filled in thus requiring more effort 

2. Tweets that are long requiring more cognitive effort to process 

3. Tweets that are from a brand that tweets with high frequency indicating that each tweet 

may not have much value 

4. Presence of a question mark requiring the recipient to put in more effort into thinking 

about an answer to the question 

5. How long ago the tweet was first sent – the longer it has been the less likely that it is 

current and, hence, less likely that it will be of interest when retweeted 

We next discuss our data collection approach and operationalization of the variables. 
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1.3. Data 

In this research, we consider data from a well-known social network, Twitter. We 

considered tweets originated from 62 brands across four product categories of “Auto”, 

“Food/Beverages”, “Dinning”, and “Airline”, and collected data through twitter API 

(Application Programming Interface). We chose these categories due to data availability 

and less fragmentation in terms of brands within each category. Initially, we considered 

top 20 brands in terms of number of followers in each category, where we collected 500 

recent tweets as of 1 April 2012 for the selected 80 pages. However, not all the 500 tweets 

from brands have general audience, and generally, the tweets posted by brands have two 

types of audience: all followers or specific individuals. We only consider tweets posted to 

general audience, because mainstream of this research is to study retransmission of the 

tweets targeted to general audience. The exclusion of individual-specific tweets (reply 

tweets) from the sample resulted in some pages having very few tweets. After dropping the 

reply tweets, we did not consider brands with less than 50 tweets in our sample. In addition, 

we did not include pages posting tweets other than English language. Given all these 

conditions, we have 14163 tweets across 62 brands. Table 1.1 provides aggregate summary 

statistics across four categories. 

Table 1.1 – Category Breakdowns 

Categories  # of RT # of tweets Ratio # of Followers # of FB Fans 

Auto 64400 5262 12.24 1,236,568  37,900,199 

Food/Beverage 68254 3905 17.48 2,343,389  147,194,921 

Dinning 67624 3529 19.16 1,683,801  63,086,630 

Airline 17490 1467 11.92 2,661,346  5,799,490 
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Table 1.2  provides the brand names and number of tweets for each in our sample. 

The brands that are crossed out are not included in the final sample. 

Table 1.2 – List of brand names for each category with the number of 

tweets considered for each brand (crossed brands have been dropped) 
# Auto Category # of tweets # Food/Beverages Category # of tweets 

 Ferrari (Italian) 390  Starbucks Coffee 37 

1 Audi 184 20 Pepsi 163 

2 Ford 241 21 Red Bull 146 

3 Chevrolet 122  Coca-Cola (Coke) 8 

4 Toyota 362 22 Monster Energy 443 

5 Nissan 309 23 Dunkin' Donuts 113 

6 VW 181 24 Domino's Pizza 86 

7 Harley-Davidson 448 25 Dr Pepper 98 

8 Jeep 307 26 PepsiCo 62 

9 BMW 53 27 Gatorade 286 

10 Porsche 369 28 Mountain Dew 84 

11 General-Motors 253 29 Ben & Jerry's 272 

12 Honda 306 30 Wheat Thins 347 

13 Dodge 294 31 Arizona Iced Tea 270 

14 Chrysler 306 32 Oreo 129 

15 Tesla 396 33 Sierra Nevada 203 

16 Aston-Martin 416 34 Kraft 286 

17 Cadillac 297 35 Bacardi 450 

18 Mazda 267  Lipton Brisk Iced Tea 25 

19 Hyundai 151 36 Skittles 467 

 Dinning Category # of tweets  Airline Category # of tweets 

37 Subway 197  JetBlue Airways 6 

38 McDonald's 338 54 Southwest Airlines 151 

 Taco Bell 10 55 Air Asia 194 

39 Hard Rock Cafe 261  American Airlines 3 

40 Chick-fil-A 137  TAM Airlines 13 

 Pizza Hut 6 56 Virgin America 100 

41 KFC 154 57 Delta Air Lines 275 

 Wendy's Restaurant  26  KLM 5 

42 Chili's Grill & Bar 371 58 British Airways 82 

43 Papa John's Pizza 279  US Airways 2 

44 Arby's 96  WestJet 42 

45 P.F. Chang's 53  Lufthansa (German) 467 

46 The Cheesecake Factory 96  Virgin Atlantic 15 

47 Dairy Queen 302 59 Air New Zealand 65 

48 Hooters 354  Alaska Airlines 10 

49 Sonic Drive-In 103 60 Hawaiian Airlines 256 

50 Outback Steakhouse 110  easyJet 21 

51 California Pizza Kitchen 98 61 Lufthansa - USA 108 

52 Popeyes Chicken 352 62 Air Canada 236 

53 T.G.I. Friday's 228  Cathay Pacific 27 
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1.3.1. Dependent Variable 

The dependent variable is the number of times the tweets posted by brands have 

been retransmitted. Our data collection is a one-time process, occurred 1 April 2012, and 

it is cross sectional. We considered the recent 500 tweets for each page as of 1 April 2012. 

Therefore, the posting date of the tweets could date back differently with respect to 1 April 

2012, depending on the activity level of the pages. For example, a brand that posts 

frequently (i.e. 50 tweets per day), its 500 tweets will probably range a short period (i.e. 10 

days), whereas for infrequent senders (i.e. 5 tweets per day), that range could go back 

several months (i.e. 100 days). This data collection mechanism results in unbalanced data 

with respect of number of days over which a tweet could have been retweeted. One 

potential problem with this data collection procedure is that tweets posted right before the 

data collection day might not get their ultimate retweet count; therefore, considering their 

retweet count as of observation day might bias the results. In order to overcome this issue, 

we re-observed the dependent variable, retweet count, a year after the initial data collection 

(1 April 2013) to make sure that all the tweets in our sample received their ultimate retweet 

count. Table 1.3 and Figure 1.2 provide summary statistics and histogram of dependent 

variable (for better visualization, histogram is shown to 100). 

Table 1.3 – Summary statistics of dependent variable 
Range of Retweet Count Frequency  Summary Statistics Retweet count 

0 1332  Mean 15.38 

(0,10] 8669  Std 67.58 

(10,100] 3904  Min 0 

(100,1000] 248  1st Q 2 

(1000,max] 10  Median 5 

   3rd Q 12 

   Max 3131 
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Figure 1.2 – Histogram of retweet count (up to 100 for better 

visualization) 

 

1.3.2. Text Related Covariates 

In this section, we discuss the construction of text-based covariates. We used two 

sets of covariates, each extracted differently. The first set consists of seven indicator 

variables constructed based on the presence of specific symbols or characters. Table 1.4 

shows these variables as well as their description and summary statistics. 

Table 1.4 – List of text related covariates based on presence of symbols 

with their description and their summary statistics in the data 
Variable  Description Yes No 

Http If the tweet includes any link to a website 8810 5353 

HashTag If text contains any hashtag “#”; Hash tags are popular in 

twitter to make the word coming after hashtag traceable 

through search, and also gives the reader a general idea of the 

tweet topic 

5764 8399 

DollarSign If the tweet includes any pricing information, measured by 

presence of “$” sign 

529 13634 

Blank  If the tweet contains a blank as “ ______ “. Pages usually ask 

the audience to fill in the blank to generate engagement. 

72 14091 

Exclamation Presence of “!” sign 6457 7706 

Question Presence of “?” sign 3123 11040 

RT_if If the twee specifically asks for retweet, and contains the  “RT 

if ….” expression 

145 14018 
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The second set of constructed covariates has the objective of categorizing the tweet 

content. Methods such as bag of words and text classifiers have been popular. In the bag 

of words method, the procedure is to find the frequently used words, extract the factors 

based on the co-occurrence of those words, and subsequently cluster the factors to 

categorize the content. This method is not effective in this study since twitter only allows 

140 characters; hence, the co-occurrence of related words is less probable, leading to 

inaccurate factors and clusters. In the classifying method, the task is to label a class based 

on the content. It usually starts with a training set, where the classifier will learn and 

subsequently it will be able to classify the data. 

The approach we used has the advantage of being simple to implement from the 

brand perspective, and interpretable from the researcher side. We construct indicator 

variables based on presence of some category of words in the tweet text. We took the 

following preparation steps before the procedure for constructing the text categories.  

1- Removing “@” mentions and punctuation 

2- Removing http link in the content 

3- Removing stop words  

4- Converting all words to lower case 

5- Stemming all words since there might be several versions of the same word 

Upon completion of these tasks, we extracted the most frequent unique words, as 

well as the combination of two and three words. Based on the list of words, we identified 

specific categories where presence of some frequently used words identifies those 

categories. A potential problem with this approach is that two categories could happen at 



www.manaraa.com

16 

 

the same time, whereas using a classifier provides the probability that a tweet belongs to a 

category, and based on the highest probability, it categorizes the tweet. Table 1.5 shows 

the words used for constructing indicator variables for each category. 

Table 1.5 – List of extracted categories based on the used words 
Category Words used as the category identifier 

Promotion 

free, chance, sale, commercial, giveaway, promo, chance win, give away, 

gift card, enter chance, enter win, win trip, last chance, chance 2, enter 

chance win, no purchase necessary, chance 2 win, send gift card 

Brand Mentioned Any explicit mention of the brand on the tweet 

Time Mentioned 

day, today, now, year, week, weekend, tomorrow, tonight, Friday, night, 

lunch, Monday, month, morning, April, breakfast, Saturday, Sunday, 

Tuesday, winter, yesterday, last night, new year, right now, last week, next 

week, every day 

Action Requested 
check, watch, join, vote, tell us, tweet us, let us, check new, check video, 

click here, vote favorite, let us know 

Event Oriented 
game, birthday, Event, holiday, NCAA, valentine, super bowl, big game, 

spring break, St Patrick’ day 

1.3.3. Additional Tweet Characteristics 

In addition to text covariates, we controlled for the posting weekday and daytime 

of the tweet, the time elapsed after the posting time of the tweet to the observation date, 

and the number of characters in the tweet. The posting weekday and daytime has an effect 

on the visibility of tweets. If the posting time is such that less people are likely to see the 

tweet, then the overall retransmission of the tweet decreases. Since the posting time varies 

based on time zone, we unified the posting time based on U.S. Central time zone, and 

constructed the weekday that tweet originally posted as well as the time of the day that 

tweet posted. We categorized daytime variables into four hours intervals, hence six 

categories. Table 1.6 shows the frequency of observations for weekdays and daytime. In 

addition, the time elapsed after posting the tweet is measure based on the secondary 

observation day, 1 April 2013. Table 1.7 have the summary statistics of these variables. 
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Table 1.6 – Frequency of weekday and daytime variables across their levels 

Weekday Frequency  Daytime Frequency 

Friday 2361  time 0-4 248 

Saturday 1274  time 4-8 487 

Sunday 1111  time 8-12 4721 

Monday 2155  time 12-16 5119 

Tuesday 2394  time16-20 2618 

Wednesday 2531  time 20-24 970 

Thursday 2337    

 

Table 1.7 – Summary statistics of additional tweet level covariates 

 Mean Std Min 1st Q Median 3rd Q Max 

NumCharacter 109.40 28.29 9.00 91.00 118.00 134.00 147.00 

LOG(DaysElapsed) 6.06 0.17 5.86 5.93 6.01 6.13 6.69 

1.3.4. Brand Related Variables 

We observed the network characteristics of the brands on a daily basis. For a given 

tweet, we observed the following variables (acquired from fanpagelist.com) and their 

summaries are in table Table 1.8. 

 Number of followers (NumFollower): total number of individuals signed up to 

receive tweets from the page as of the day tweet has been posted 

 Number of followers gain (NumFollowerGain): number of individuals signed up to 

receive tweets from the page on each day   

 Number of Facebook fans (NumFacebookFan): total number of individuals who 

liked the page on Facebook as of the day tweet has been posted 

 Number of Facebook fans gain (NumFacebookFanGain): number of individuals 

signed up to receive Facebook updates from the page on each day 

 Number of following (NumFollowing): the total number of pages that the brand is 

following on twitter 
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Table 1.8 – Summary statistics of brand network size 

 Mean Std Min 1st Q Median 3rd Q Max 

LOG(NumFollower) 10.76 0.95 8.94 10.11 10.54 11.12 14.07 

LOG(NumFollowerGain+200) 5.75 0.49 3.76 5.48 5.60 5.82 9.29 

LOG(NumFaceFan) 14.07 1.49 10.19 13.14 14.22 15.02 17.15 

LOG(NumFaceFanGain+2000) 8.45 0.75 6.70 7.83 8.25 8.85 11.83 

LOG(NumFollowing) 8.03 1.95 1.79 6.56 8.50 9.65 10.89 

 

1.3.5. Additional Brand Variables 

We considered social media presence of the brands on few other well-known social 

networks, Google+, YouTube, Instagram, Pinterest, and incorporated this data as four 

indicator variables in the analysis. In addition, we included a dummy variable defined as 

the presence of brand on the Interbrand list of 2012. This well-known list includes rankings 

of the top 100 global brands based on their estimated brand equity. In general, brand equity 

is the sum of unique attributes of brands that affect the marketing effectiveness of a product. 

There are multiple ways to estimate the brand equity. The estimated brand equity by 

Interbrand consists of several internal factors (clarity, commitment, protection, and 

responsiveness) and external factors (authenticity, relevance, differentiation, consistency, 

presence, and understanding). Another characteristic of brand in our data is the tweeting 

frequency of the brand page, defined as the number of tweets posted on each day. It is day 

level data and identical for the tweets posted on the same day (TweetFreq). 

Table 1.9 – Summary Statistics of additional brand variables and 

tweeting frequency 

Social Network Google+ YouTube Instagram Pinterest Interbrand 

Frequency 27 44 15 18 13 

 Mean SD Min. 1st Q Median 3rd Q Max 

LOG(TweetFreq) 0.739 0.688 0.000 0.000 0.693 1.099 3.497 
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1.4. Modeling Approach 

Since the dependent variable is the number of retweet count, therefore, we employed 

an empirical Poisson model for our modeling approach. However, due to possible over-

dispersion, we accounted for extra variation in the model through a lognormal mixture, 

which affects variance but not mean. In addition, we used a hierarchical model, since we 

have covariates in multiple levels. In specific, let the 𝑁𝑢𝑚𝑅𝑇𝑖𝑗𝑘𝑡 to be observed retweet 

count of tweet 𝑖 belongs to brand 𝑗 in category 𝑘 posted on day 𝑡, then we have 

𝑁𝑢𝑚𝑅𝑇𝑖𝑗𝑘𝑡  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖𝑗𝑘𝑡 𝜖𝑖) 

The parameter 𝜖𝑖 is the mixing component having a lognormal distribution with as  

log (𝜖𝑖) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜏𝜖). This term will capture the over-dispersion. The mean of the 

Poisson distribution, 𝜆𝑖𝑗𝑘𝑡 relates to covariates through a log link. 

log(𝜆𝑖𝑗𝑘𝑡) = 𝐶𝑎𝑡𝑒𝑔𝑜𝑟𝑦. 𝑒𝑓𝑓𝑒𝑐𝑡𝑘 + 𝐵𝑟𝑎𝑛𝑑. 𝑒𝑓𝑓𝑒𝑐𝑡𝑗𝑡 + 𝑡𝑤𝑒𝑒𝑡. 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑟𝑖𝑠𝑡𝑖𝑐𝑠̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑖𝑗𝑘�̅� 

The first component is the category specific intercept; the second component is the 

tweet characteristics, which includes all the tweet level variables described in section 1.3.2 

and 1.3.3. The vector �̅� is the effect of these covariates. The third component is the effect 

of brand 𝑗 on day 𝑡 that relates to network covariates as below, 

𝐵𝑟𝑎𝑛𝑑. 𝑒𝑓𝑓𝑒𝑐𝑡𝑗𝑡 = 𝑁𝑒𝑡𝑤𝑜𝑟𝑘. 𝑒𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑗𝑡 . �̅� + 𝑇𝑤𝑒𝑒𝑡𝑖𝑛𝑔. 𝐹𝑟𝑒𝑞𝑢𝑒𝑐𝑛𝑦𝑗𝑡 𝜂 + 𝐵𝑟𝑎𝑛𝑑𝑗 

The vector 𝑁𝑒𝑡𝑤𝑜𝑟𝑘. 𝑒𝑓𝑓𝑒𝑐𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
𝑗𝑡 includes the variables in section 1.3.4, and the 

vector �̅� is its respective parameters. The component 𝐵𝑟𝑎𝑛𝑑𝑗 is the role of brand’s social 

media presence and Inter-brand as below,  
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𝐵𝑟𝑎𝑛𝑑𝑗 = 𝑆𝑜𝑐𝑖𝑎𝑙. 𝑀𝑒𝑑𝑖𝑎. 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
�̅�  �̅� + 𝐼𝑛𝑡𝑒𝑟𝑏𝑟𝑎𝑛𝑑𝑗𝜃 +  𝛿𝑗 

The vector 𝑆𝑜𝑐𝑖𝑎𝑙. 𝑀𝑒𝑑𝑖𝑎. 𝑃𝑟𝑒𝑠𝑒𝑛𝑐𝑒̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
�̅� includes the four indicator variables 

described in 1.3.5. The variable 𝐼𝑛𝑡𝑒𝑟𝑏𝑟𝑎𝑛𝑑𝑗 is the presence of brand on the Interbrand 

list, and 𝜃 is its respective effect. In addition, we included a brand specific random effect 𝛿𝑗, 

which captures unobserved characteristics of brand 𝑗. Since the assumed distribution for 

the random effect affects estimated brand effects, we assume a nonparametric Dirichlet 

Process Prior (DPP) for the brand random effect. Under the DPP assumption, the 

distribution of 𝛿𝑗 is an unknown distribution 𝐺 with its average equals to 𝐺0, called the 

initial guess. A precision parameter 𝛼, represent our confidence about the initial guess, 

such that as 𝛼 → ∞ then 𝐺0 → 𝐺. In specific,  

𝛿𝑗  ~ 𝐺 

𝐺 ~ 𝐷𝑃𝑃(𝛼 , 𝐺0) 

A formal definition of DPP by Ferguson (1974) is as follows: For finite 𝑘 and any 

measurable partition (𝐴1, 𝐴2, … , 𝐴𝑘) of 𝑅, the distribution of 𝐺(𝐴1), … , 𝐺(𝐴𝑘) 

is 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(𝛼𝐺0(𝐴1), … , 𝛼𝐺0(𝐴𝑘)). The value 𝑘 represents the maximum number of 

partitions. In a general DPP model, the values of 𝛼 and 𝐺0 are unknown to researcher, and 

will be estimated in the model by assigning priors. In general, the choice of 𝛼 is related to 

the estimated number of clusters 𝑘, in a way that a smaller value for 𝛼 leads to a smaller 

number of clusters and vice versa. We adopted a gamma distribution for 𝛼 with the mean 

of two and variance of 20. This prior accounts both for large and small values of 𝛼, and is 

weakly informative. The choice of 𝐺0 is not critical since both large and small values of 𝛼 

has been accounted for. We employed a normal distribution with an unknown precision 
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parameter for the baseline distribution, where a weakly informative prior has been adapted 

for the precision parameter of the baseline distribution. By choosing these specifications, 

the induced upper value for the number of clusters is equals 62, number of brands. 

1.4.1. Model Selection  

We considered models with different specifications as competing models, and 

compared their performance through several measures. The competing models are below. 

M1: Poisson – Lognormal with DPP brand random effect 

M2: Poisson – Gamma Model – 𝐺𝑎𝑚𝑚𝑎(𝑟, 𝑟) for the distribution of 𝜖𝑖 

M3: Poisson Log-normal without brand random effect 

M4: Poisson Model – No over-dispersion, 𝜖𝑖 = 1 for all 𝑖 

We compare the models based on the DIC measure of fit as well as predictive 

assessment of the models, measured by mean square error of prediction and posterior 

predictive density check. The DIC in a model with parameters 𝜃 and the random effect 𝑢 

is calculated as follows (Ntzoufras 2011).  

𝐷𝐼𝐶 = 2𝐷(𝜃, 𝑢)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − 𝐷(�̅�, �̅�) 

The first term is the posterior mean of the deviance (-2×Log Likelihood), and the 

second term is the deviance, evaluated at the posterior mean of the parameters. The mean 

square error is 

𝑀𝑆𝐸(�̂�, 𝑦) =
∑ (�̂�𝑖 − 𝑦𝑖)2𝑛

𝑖=1

𝑛
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The posterior predictive test is a model-checking procedure based on the posterior 

predictive density. Model checks assess whether the model satisfactorily reproduces 

certain important aspects of the actual data. In specific and for the over-dispersed count 

data, the model should reproduce such features in the replicates �̂�𝑖, sampled from the 

model. Suppose 𝐶(𝑌; 𝜃) is the observed criterion of the actual data (the ratio of observed 

variance to mean in this case) and let the same criterion based on new data be denoted 

as 𝐶(�̂�; 𝜃). The comparison of these features in MCMC will give a probabilistic value for 

the discrepancy of model and data. In specific, in each MCMC iteration, the average of the 

calculated probability (6) over all iterations gives the measure of density check. 

�̂�𝑐 =  
∑ 1{𝐶(�̂�; 𝜃) >  𝐶(𝑌; 𝜃)}𝑇

𝑡=1

𝑇
 

The function 1{ } is an indicator function and 𝑇 is the length of MCMC samples. 

Values of �̂�𝑐 near zero or one (above 0.9 or below 0.1) indicate discrepancy between the 

observations and the model. Values relatively close to 0.5 mean that actual data and new 

data sampled from the model are comparable in terms of the above feature  

1.4.2. Model Estimation  

The proposed model has been estimated using Bayesian approach and by using 

BUGS. The prior distributions for the coefficients are proper but not-informative (Normal 

with mean zero and large variance), and for the two precision terms, Gamma distribution 

with mean one and large variance has been considered. The estimation is based two chains 

with 5000 burin, 5000 samples with thinning of 10. Convergence assured graphically. 
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1.5. Results 

Table 1.10 shows the three criteria we use to compare fit and predictive 

performance of our models. Based on these measures, model 1 (M1) performs better in 

terms of all three measures. The second model, Poisson Gamma with brand random effects 

has a poor performance on �̂�𝑐, which means the model cannot fully capture over-dispersion. 

The third model is Poisson Lognormal with brand random effects. This model also 

performs very well, but in terms of DIC, it is not performing as well as M1. The fourth 

model is the regular Poisson model without any mixture, and as expected, it is performing 

very poorly. In sum, we chose model 1, and next, we present results from this model. 

Table 1.10 – Model Comparison Results 

  DIC MSE �̂�𝒄  

M1 73444 30.69 0.366 

M2 73653 32.56 0.026 

M3 73660 30.73 0.379 

M4 272300 3850.12 0.000 

 

Based on the estimated mean and 95% probability intervals of the parameters 

presented on Table 1.11, the “Auto” category has the highest retweet volume among the 

four categories, and subsequent to that, “Food/Beverage” and “Dining” are the second and 

third categories. Interestingly, “Airline” is the last category in terms of retweet volume. 

Extent of brand’s popularity on social media also has a significant role on retweet count. 

Almost all of the five social media presence variables have a significant positive effect on 

retweet volume, except number of following which is not significant. Social media 

presence variables have some diverse effects. Presence on Google+ has a positive effect on 

retweet volume, whereas presence on YouTube and Instagram has negative effects. Brands 

mostly promote their YouTube videos and Instagram photos on Twitter, therefore, the 
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results of such negative effect could be due to irrelevance of tweets to their audience, 

assuming that they include links to YouTube video or Instagram photos. In other words, 

individual may find such links to have less benefit for them to retweet, although we cannot 

explain this effect with great confidence, since we do not observe cross social network 

performances. Presence of brand on Interbrand list also does not have a significant effect 

of Twitter performance. Among the text-related variables that signal altruistic benefits, as 

expected, the effect of “Promotion”, “Dollar Sign”, and “Time Mentioned” are positive 

and significant. However, “Action Oriented” variables does not have a significant effect 

on retweet count. Among the content-related variables that signal self-enhancement 

benefits, brand mentions and presence of a link have significant positive effects. In 

addition, frequency of tweeting have a negative effect, since more tweets per day make a 

particular one to be irrelevant to the audience, hence it reduces the overall benefits 

individuals might gain by retweeting. Presence of event related content is not significant.  

The effect of effort on retweeting has been examined in two categories of effort 

minimization and effort avoidance. Presence of a hashtag has a positive effect on retweets. 

Hashtag are usually used to highlight a keyword in a tweet, and its presence also makes the 

hashtag phrase to stand out against other words, hence it grabs the attention and reduces 

the effort to process information. Presence of “RT_if” in a tweet has a positive effect on 

retweeting, since it reduces the information processing required to make retweet decision. 

Presence of an exclamation mark does not have a significant effect on retweeting, but its 

excessive use as captured by number of exclamation marks has a negative effect. The three 

variables of effort avoidance, all have negative and significant effect on retweeting. 

Presence of brank and question mark require additional effort to make the tweet ready for 
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retweeting; therefore, receivers may avoid such efforts and do not retransmit the tweet. In 

addition, higher tweet length leads to less retweets, since a longer text needs more effort 

for processing, and individuals might avoid reading a long tweet. Although a longer tweet 

means more information, but considering huge amount of tweets individuals receiving 

every day, they might want to avoid longer tweets. Regarding the control variables on time 

of the day and weekday, based on the estimated coefficients and base level of Friday, it 

seems almost every weekday will work better than Friday and Saturday, and Sunday is the 

best time to get more retweets. That might be due to less content competition on Sundays. 

In terms of time of the day, it seems only 4 to 8 in the morning is the best time to tweet. 

Figure 1.3 shows density of the estimated posterior mean of random effects across 

the brands. In addition, Figure 1.4 shows boxplots of the random effects’ posterior 

distributions for all brands. It is interesting the there are few brands that are on the positive 

and negative side of the distribution, and most of the brands do not have significant 

differences in terms of their unobservable characteristics, and their differences are captures 

by the included variables in our model.  
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Table 1.11 – Estimated coefficients of the model 
Variable Mean 2.50% 97.50% 

Category – Auto * 1.75 1.44 2.03 

Category – Food/Beverage * 1.56 1.37 1.74 

Category – Dinning * 1.33 1.16 1.53 

Category – Airline * 1.20 0.94 1.44 

LOG(NumFollower) * 0.37 0.30 0.46 

LOG(NumFaceFan) * 0.13 0.05 0.21 

LOG(NumFaceFanGain) * 0.04 0.01 0.07 

LOG(NumFollowerGain) * 0.18 0.15 0.20 

LOG(NumFollowing) -0.06 -0.12 0.01 

Google+ * 0.37 0.24 0.48 

YouTube * -0.25 -0.42 -0.08 

Instagram * -0.44 -0.60 -0.25 

Pinterest 0.11 -0.05 0.27 

Interbrand 0.08 -0.11 0.31 

Promotion * 0.36 0.28 0.43 

Dollar Sign * 0.69 0.59 0.80 

Time mentioned* 0.20 0.16 0.24 

Action -0.01 -0.07 0.06 

Event -0.08 -0.17 0.01 

Brand * 0.22 0.17 0.26 

Http * 0.12 0.08 0.16 

LOG(NumTweet) * -0.23 -0.25 -0.21 

Hash tag * 0.05 0.01 0.09 

RT_if * 1.63 1.45 1.81 

Exclamation 0.02 -0.06 0.12 

# of Exclamation * -0.09 -0.17 -0.02 

Blank * -0.37 -0.63 -0.09 

Question * -0.13 -0.18 -0.08 

NumCharacter * -0.16 -0.18 -0.13 

Saturday -0.01 -0.09 0.07 

Sunday * 0.17 0.09 0.25 

Monday * 0.15 0.09 0.22 

Tuesday * 0.11 0.04 0.18 

Wednesday * 0.13 0.07 0.19 

Thursday * 0.07 0.01 0.14 

Days Elapsed * -0.07 -0.10 -0.04 

Time – [0,4) 0.00 -0.16 0.15 

Time – [4,8) * 0.15 0.03 0.28 

Time – [8,12) 0.03 -0.05 0.13 

Time – [12,16) -0.03 -0.11 0.07 

Time – [16,20) 0.02 -0.07 0.12 
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Figure 1.3 – Density ploy of the estimated random effects for the 

distribution of brand random effects 

 

1.5.1. Other parameters of Model 

In addition to the model coefficients, Table 1.12 shows the estimated parameters 

of the DPP model as well as precision parameters of the lognormal mixture. The 

estimated DDP parameters suggest that with a high degree of belief (9.13) distribution of 

random effect is a normal distribution with precision parameter of 3.4. 

Table 1.12 – Other Parameters of the model 

Variable Mean 2.5% 97.5% 

𝛼  9.136 1.812 28.88 

𝜏𝐺  3.404 1.005 7.237 

𝜏𝜖  1.003 0.976 1.033 

K 17.390 8 31 
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Figure 1.4 – Boxplot estimated random effects across brands 
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1.6. Discussion 

In this research, we argued that individuals construct their retransmission choice in 

Twitter based on two metagoals of benefit maximization and utility minimization. In 

addition, by employing more than 14000 tweets posted by 62 brands, we articulated 

satisfying two metagoals of benefit maximization and effort minimization based on brand 

and tweet characteristics. We demonstrated that tweet characteristics that signal benefit to 

the receivers in the form of social interaction, self-enhancement, and altruism would have 

a positive effect on retransmission of tweets posted by brands. In addition, we showed that 

message cues that reduce the effort required for processing tweet content would have 

positive effects on retransmission. 

1.6.1. Managerial Implication 

Our research provides important managerial implications for brands. By building a 

larger network and having a stronger presence on social media, brands could potentially 

increase retransmission of their messages. In addition, brands in popular and relevant (to 

everyone) product categories that provide social interaction benefits will have a higher 

chance for their messages to be retransmitted, hence using social media could benefit them 

more than other, less popular product categories. Our results will also have implications 

for content strategies on social media. By identifying content categories that provide 

tangible and intangible benefits for receivers to share them with their followers, brands can 

increase effectiveness of their social media strategies for retweeting. Furthermore, by 

incorporating strategies that reduce the effort require to process information will also 

enhance their social media efforts in terms of retransmission of their messages. 



www.manaraa.com

30 

 

1.6.2. Limitation and Future Research 

In this research, we are limited to our methods and data. First, we did not fully 

captured context of tweets in which they have been posted. We only accounted for presence 

of specific words that signal benefits to the individuals, while the overall context of the 

tweet might also has a role on retransmission. In addition, social media world as well as 

Twitter is evolving, therefore, individual’s behaviors and habits change, which 

subsequently affects how firms used these medium for marketing purposes. Therefore, 

verifying such effects through several studies will also help to understand the change and 

evolving aspect of social media. Furthermore, our results are bounded by product 

categories we considered, and considering multiple product categories and their properties 

that could lead to more retransmission is an interesting venue for further research.  
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2. Essay 2: Source Effects In Social Media: How Celebrities Affect 

Lives of Their Messages 

 

2.1. Introduction 

Social media evolved into an important communication channel for brands by 

enabling marketers to communicate messages directly to customers. (Mangold and Faulds 

2009). However, due to customer-to-customer relationships on social networks, marketers 

gain addition reach for their messages through their followers as receivers of the messages, 

sharing them with their followers. This sharing mechanism spreads brand’s message 

beyond its audience, and brands gain social advocacy through individuals sharing their 

messages (Malhotra et al 2012). 

Rather than sending messages through brand’s social media accounts, marketers 

also employ celebrities in order to promote messages about their brands. The huge follower 

base of celebrities provides significant exposure for brands and their messages. For 

instance, celebrity-sponsored tweets where celebrities tweet about brands to their followers 

on Twitter are quite common today. In addition to reaching celebrities’ followers, brands 

will get additional reach for their messages, through retransmission of message by 

celebrities’ followers. For instance, on Mother’s day in May 2013, a tweet by singer Justin 

Bieber about the flower delivery service, 1-800-FLOWERS, was retweeted over 75 

thousand times over multiple days. Given the widespread use of social media and 

celebrities by brands, there are few insights regarding the role of celebrities on how 

messages sent by them are shared on social media. Specifically, how does celebrity 
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attributes such as number of followers affect volume and duration of sharing? If such an 

effect exists, given popularity of celebrities and their role as source of the message, the 

question of whether celebrity attributes have any role on how message characteristics are 

perceived by receivers, which subsequently affects volume and duration of sharing, is 

critical. Clearly, understanding role of celebrities and message characteristics on how 

messages are retransmitted leads to a development of better celebrity sponsored campaigns 

in the case of promoting messages on social media. In this research, we examine effects of 

tweets characteristics and celebrity attributes on how often and how long the tweets posted 

by them are retweets. In addition, we investigate how celebrities as source of message 

moderate effects of content characteristics on extent of the contents being shared.  

In order to develop our conceptual framework, we consider retweeting process in 

underlying behavior of individuals who decide to retransmit tweets on social media. Those 

individuals involve with a choice-making situation, where they decide to share a content 

based on benefits of two options, retweeting or being passive (not retweeting). In general, 

choice characteristics reinforce how individuals process information in order to make a 

decision. Choice characteristics in the context of retweeting are tweet attributes. However, 

tweets’ contents do not follow a standard format, and their attributes are unknown to 

individuals prior to observing them. Thus, the process of making retransmission decision 

in such a situation is constructive (Bettman et al. 1998). Based on this choice situation, we 

argue that two meta-goals of maximizing benefits and minimizing effort are desired. In this 

choice-making process (retweeting), individuals rely on message cues to evaluate content 

(tweet) and construct their choice criteria, in order to evaluate benefits of retransmitting a 

message, and minimize their efforts to process information. Therefore, tweet characteristics 



www.manaraa.com

36 

 

that signal utility for retweeting and require less effort to process will have a positive effect 

on retweeting and vice versa. 

Context of celebrities posting tweets is a source-dominated communication, where 

source of a message has an impact on how individuals react to the message. The reason for 

such a source domination is their popularity and attractiveness to their followers. Source 

effect theory has been an extensive area of research in marketing (Wilson and Sherrell 

1993). Several studies examined effect of source characteristics such as trustworthiness, 

expertise, and attractiveness on persuasion, attitude, purchase intention, and likeability 

(Petty, Cacioppo, and Goldman 1981, Harmon and Coney 1982, Harkins and Petty 1987). 

For instance, Kang and Herr (2006) showed that in situation where the cognitive resources 

to process information is low, because of either low involvement or low ability, the positive 

source characteristics would positively influence product attitudes. By relying on source 

effect theory, we develop our theoretical framework, where we argue that in the context of 

twitter, where involvement with a tweet is low, source characteristics affect how a tweet is 

perceived. In the case of tweets posted by celebrities, we argue that celebrity’s popularity 

affects how individuals process tweet content, which subsequently affects their decision to 

retweet. Specifically, we argue that celebrity’s popularity, measured by number of 

followers, will moderate the effect of tweet attributes (message cues) on the extent the 

tweet is retransmitted. 

Our empirical analysis is based on 2935 tweets posted during March 2013 by 65 

celebrities across seven categories of entertainment industry: actors, musicians, TV hosts, 

journalists, bloggers, athletes, and models. We considered top 10 celebrities in each 

category in terms of number of individuals who follow them. In addition to volume of 
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retweets, we also considered duration over which the retweets occurred. Both measures are 

important for marketers. The volume of retweet is a measure of how many individuals 

shared a tweet, while duration of retweet measures the lifetime of the message on social 

media, and is measured as the time between posting a tweet and its last retweet. Clearly, 

the more a tweet lives on social media, the more attention it gets from prospective receivers, 

hence, there is a higher chance it will be retransmitted again, which subsequently increases 

the duration of retweets. However, in theory, tweets could be retweeted at any time, and 

since duration of retweets is calculated based on the last retweet, therefore, a retweet at any 

time will change the duration of retweets. As a result, observing the “true” duration might 

be challenging. In order to observe duration of retweets, we employed a data collection 

algorithm with two fixed intervals, where the tweets are tracked in the first interval to 

observe their last retweet, and their last retweet is confirmed in the second interval, by not 

getting any addition retweet in the second interval. If retweets occurred both in the first 

and second interval, we consider the duration as censored with respect to the end of first 

interval. The volume of retweet is observed along with the duration through this censoring 

mechanism. The primary celebrity attribute that we considered is the number of followers, 

but we also controlled for other, unobserved, attributes via random effects. Our tweet 

attributes include tweet type (Retweet and Reply), length of tweet in characters, presence 

of a hyperlink, hashtag, exclamation mark, and question mark. We use a Poisson-

Lognormal model for the volume of retweets and a Weibull proportional hazard model for 

duration of retweets, and the two models are estimated jointly in a Bayesian framework. 

Our results suggest that popularity of a celebrity measured by number of followers 

affects both volume and duration of retweets. However, there are additional celebrity 
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characteristics that are not captured by number of followers, which subsequently affects 

volume and duration of retweets. Tweet types of reply and retweet will significantly reduce 

the volume and duration of retweets. Among the variables related to tweet content, question 

mark and presence of link decreases the volume and duration of retweet. Presence of 

exclamation mark in a tweet only affects volume of retweet, but not duration of retweet. 

The effect of hashtag is significant both through its main effect and its interaction effect 

with the number of followers. That is, celebrities with more number of followers will 

benefit more by including hashtag on their tweets. In addition, the association of volume 

and duration is relatively strong.  

Our research has several managerial implications for firms. It provides insight to 

brands on role of celebrities, their number of followers, and their unobservable 

characteristics on how tweets posted by them will be retransmitted on social media. Firms 

could use these insights for sponsoring celebrities for marketing purposes. In addition, by 

considering the general implications of source effect on how message attributes are 

perceived, firms could investigate message types and attributes that fit with the brand 

image and firm’s overall communication strategies, and subsequently employ them in their 

content strategies. For example, a specific hashtag might perform better with a brand than 

others since it aligns better with the brand’s image.  

In the next section, we discuss our theoretical framework, and next, we discuss our 

data and modeling approach. Finally, we discuss results and managerial implications, and 

conclude by limitation and direction for future studies.   
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2.2. Theoretical Background 

Volume and duration of retweets on social media underlie in behavior of 

individuals who decide to share contents. As a result, understanding decision-making 

process of individuals who involve in this process is critical. In choice making situations, 

in general, individuals take actions based on utility of options (Guadagni and Little 1983). 

In the case of retweeting, such action is sharing the content, utilities of sharing are self-

enhancement (De Angelis et al 2012), social interaction (Lovett, Peres and Shachar 2013), 

and altruism (Hennig-Thurau et al 2004), and the options are either retweeting, or staying 

passive (not retweeting). Thus, in the case of a retweet, we argue that utility of retweeting 

is higher than being passive. Therefore, evaluating utility of retweeting is a critical 

component of this choice-making situation for individuals who are involved with this 

process. However, there are several ways that individuals could evaluate utility of actions, 

and it primary depends on choice attributes. The choice attributes that individuals have to 

evaluate in case of retweeting are tweet attributes. Although a tweet has a maximum of 140 

characters, but its content varies significantly based on intention of sender, therefore, its 

features are not expectable by receivers prior to observing the tweet. As a result, in order 

to evaluate tweet content, individual will construct their choice criteria on the fly, and 

evaluate utility of retweeting based on their constructed criteria. In sum, individuals rely 

on constructive choice process to evaluate contents, and not well-rehearsed decision 

criteria. In the next section, we discuss the constructive choice theory and its application 

to the case of retweeting.  
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2.2.1. Constructive Choice Process 

Decision making under the constructive choice process involves evaluation on the 

fly. Instead of evaluating all options carefully, individuals rely on metagoals in order to 

evaluate and arrive at a choice. Bettman et al (1998) suggest four metagoals of constructing 

choice criteria 1) maximizing the accuracy of a decision 2) minimizing the cognitive effort 

required for the decision 3) minimizing the experience of negative emotion while making 

the decision, and 4) maximizing the ease with which a decision can be justified to others 

or to one’s self. In addition, in different situations, different metagoals will be active and 

desired. However, in the situation where there is little involvement and there is no need for 

justification, the two metagoals of maximizing the accuracy of the decision and minimizing 

the cognitive effort required may become the dominant goals (Beach and Mitchell 1978, 

Bettman et al 1998, Hogarth 1987, Payne, Bettman, and Johnson 1993, Shugan 1980). 

Twitter is a social media where individuals receive multiple tweets per day, have a low 

involvement with a particular tweet, and are active due to entertaining purposes. Therefore, 

we argue that choice of tweet retransmission is such a situation, where choice criteria are 

constructed based on satisfying two metagoals of benefit maximization and effort 

minimization. The benefits individuals might gain by retransmission of celebrities’ tweets, 

individuals rooted in self-identity and presenting themselves to other, which translates to 

self-enhancement benefits. In sum, in the case of celebrity-originated tweets, individuals 

will rely on message cues to evaluate their utility in terms of self-enhancement, but they 

also wish to minimize their effort as well. 
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2.2.2. Source Effect 

There has been extensive literature in marketing on effect of message source on 

persuasiveness (Hovland and Weiss 1951, Fuchs 1964, Harmon and Coney 1982, Harkins 

and Petty 1987, Wilson and Sherrell 1993, Kang and Herr 2006). The theoretical 

foundation of these studies rooted in Elaboration Likelihood model (ELM) and the 

heuristic-systematic information processing theory of information processing (Chaiken 

1980, Petty, Cacioppo, and Goldman 1981). According to these theories, there are two 

routes for information processing, systematic (central), and heuristic (peripheral). In the 

systematic information processing route, which needs significant amount of cognitive 

resources in order to evaluate message’s arguments, individuals use their cognitive 

resources to process the message. In the heuristic information processing route, which 

individuals employ less effort to process the arguments, “recipients may rely on more 

accessible information such as source identity or non-content cues in deciding to accept a 

message’s conclusions” (Chaiken 1980). In such a situation, where personal involvement 

is low, peripheral cues become more important and their effect will be more dominant on 

persuasion (Petty, Cacioppo, and Goldman 1981). 

Individuals receive several tweets every day. Due to exposure to this huge amount 

of tweets, in general, involvement with a particular tweet is low. In the process of 

constructing choice criteria to retweet a message, since there is little involvement with a 

particular tweet, we argue that individuals rely on heuristic information processing in order 

to process information. In such a situation, peripheral cues are an important element of the 

message. Source of a message has been known as an important heuristic cue in the 

literature. For example, Chaiken (1980) showed that when there is little involvement, 



www.manaraa.com

42 

 

opinion changes are significantly greater given a likeable communicator. Harmon and 

Coney (1982) considered the effect of source credibility on persuasion. They found that 

source credibility is important when individuals do not favor an argument or have low 

involvement with the argument. Wilson and Sherrell (1993) considered a meta-analysis of 

745 studies that considered the source effect on persuasion. They found that source 

expertise has highest effect on persuasion. Kang and Herr (2006) provided a unified 

framework to explain the counter-arguments in the source effect results. They hypothesized 

that “when the level of cognitive resources available for information processing is 

relatively low, positive source characteristics, either affectively or heuristically, will 

positively influence product attitudes, irrespective of product category”. Such findings 

suggest that celebrity’s popularity affects how contents originated by them are perceived. 

In the context of celebrities communicating a message, Rossiter and Smidts (2012) 

examined the role of celebrities in print advertising, and considered the pairing of presenter 

and product, but they found that, generally, inclusion of celebrity presenter does not 

significantly increase the persuasiveness of the message. However, they found that 

expertise is the most important attribute that could affect persuasiveness. In the context of 

social media, in a series of experiments, Jin and Phua (2014) showed that message 

promoted by celebrities with more followers affects product involvement, buying intention, 

and the intention to spread eWOM. The also showed that celebrities with high vs. low 

number of followers are perceived as a more credible source in terms of attraction, 

trustworthiness, and competence. These findings suggest that celebrities’ popularity 

influence receiver’s response to the message. In other words, their popularity could act as 

a source effect on subsequent actions, where sharing in one among many others.  
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In the context of celebrities posting tweets on social media, based on the findings 

in the literature, we argue that content characteristics that signal positive (negative) benefit 

for the receiver on retransmitting of the content will have a positive (negative) effect on 

the volume and duration of retweet. In addition, any tweet characteristic that decreases 

(increases) the effort of the receiver to process the content will have a positive (negative) 

effect on the extent the tweet is shared. Such expectations root in the constructive choice 

process theory, and realization of the two meta-goals of maximizing utility and minimizing 

effort are desired. In addition, by relying on source effect theory, we argue that celebrities’ 

number of followers, as a measure of popularity, affects individuals’ decision to retweet 

directly, as well as indirectly and through affecting how individuals evaluate a message. 

For example, in the case of a REPLY tweet, which compared to a regular tweet has less 

benefit for the receiver to retweet; the sender’s popularity will have a positive effect on 

how REPLY tweets are perceived in terms of its benefit, hence, the REPLY tweet will have 

a less negative effect for a more popular sender. We argue that such an effect exists for 

message cues that signal effort minimization and effort avoidance. For example, in the 

presence of QUESTION mark, which increases the effort to retweet, a more popular 

celebrity who sends a tweet with a question mark will have a less negative effect on 

retweeting, compared to a less popular sender in terms on number of followers.  
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2.3. Data 

The data of this research consists of tweets from a popular social network, Twitter. 

We considered tweets posted by multiple celebrities during month of March 2013. We 

chose celebrities within seven categories of the entertainment industry: Actor, Musician, 

TV host, Journalist, Blogger, Athlete, and Model. Within each category, we chose top ten 

celebrities in terms of number of followers. There have been few overlaps across categories 

such that, for example, a celebrity was both an actor and a musician. In order to make 

categories homogenous, we consider only those celebrities that are active in one category. 

In addition, there have been few celebrities posting tweets in languages other than English, 

which we did not consider them in our final sample. Table 2.1 shows categories, number 

of pages, average number of followers, and number of observed tweets for each category.  

Table 2.1 – Number of tweets in each category 

Category # of pages Mean # of Followers # of observations 

Actor 9 7.47E+06 350 

Music 10 2.31E+07 416 

TV host 10 8.46E+06 434 

Journalist 9 1.63E+06 248 

Blogger 7 1.93E+06 663 

Athlete 10 6.35E+06 571 

Model 10 9.26E+05   253 

As it can be seen from Table 2.1, the seven categories have significant difference 

in terms of number of followers, especially, the “Music” category has significant larger 

number of followers, and as much as three times of second largest category “TV host” in 

terms of number of followers. Table 2.2 shows celebrity names within each category, their 

respective number of followers, and number of tweets for each of them in our sample. In 

the next section, we discuss description of variables.    

 



www.manaraa.com

45 

 

Table 2.2 – Pages in each category and number of tweets within each page 

Celebrity Name #Follower #tweet Celebrity Name # Follower #tweet 

Actor Journalist 

Ashton Kutcher 1.40E+07 7 Maria Shriver 2.10E+06 30 

Paris Hilton 1.00E+07 84 Bill Simmons 2.00E+06 67 

Charlie Sheen 9.10E+06 12 George Stephanopoulos 1.80E+06 3 

Russell Brand 6.20E+06 64 Dr. Sanjay Gupta 1.60E+06 12 

Tom Hanks 5.90E+06 2 David Gregory 1.60E+06 15 

Emma Watson 5.70E+06 17 David Pogue 1.50E+06 24 

Stephen Fry 5.60E+06 121 Nicholas Kristof 1.40E+06 75 

Neil Patrick Harris 5.40E+06 15 John Dickerson 1.40E+06 11 

Eva Longoria 5.30E+06 28 Ann Curry 1.30E+06 11 

Musician Blogger 

Justin Bieber 3.60E+07 165 Perez Hilton 6.30E+06 476 

Katy Perry 3.30E+07 13 Heather Armstrong 1.60E+06 11 

Rihanna 2.90E+07 70 iJustine 1.50E+06 71 

Taylor Swift 2.50E+07 15 Stefanie Michaels 1.40E+06 5 

Britney Spears 2.50E+07 4 Agent M (Ryan Penagos) 1.30E+06 62 

Shakira 2.00E+07 31 Jason Sweeney 1.10E+06 14 

Justin Timberlake 1.70E+07 30 Robert Scoble 3.20E+05 24 

Nicki Minaj 1.60E+07 37 Sport 

Bruno Mars 1.60E+07 49 Cristiano Ronaldo 1.70E+07 32 

Eminem 1.40E+07 2 LeBron James 7.60E+06 47 

TV-host Shaquille O'Neal 6.80E+06 19 

Ellen DeGneres 1.70E+07 92 Wayne Rooney 5.90E+06 13 

Oprah Winfrey 1.70E+07 58 Chad Ochocinco 5.00E+06 226 

Ryan Seacrest 9.20E+06 36 Cesc Fàbregas 4.90E+06 13 

Jimmy Fallon 8.10E+06 35 Dwayne Johnson 4.20E+06 115 

Conan O' Brien 7.90E+06 20 Floyd Mayweather, Jr. 4.10E+06 17 

Daniel Tosh 7.80E+06 114 Rio Ferdinand 4.00E+06 58 

Chelsea Handler 5.40E+06 10 Lance Armstrong 4.00E+06 31 

Stephen Colbert 4.60E+06 14 Model 

Fearne Cotton 4.30E+06 47 Katie Price 1.80E+06 52 

Holly Willoughby 3.30E+06 8 Dita Von Teese 1.40E+06 20 

   Gisele Bündchen 1.20E+06 6 

   Holly Madison 1.20E+06 52 

   Cindy Crawford 1.10E+06 14 

   Barbie Blank 7.00E+05 36 

   Alessandra Ambrosio 6.30E+05 35 

   Brooklyn Decker 4.70E+05 6 

   Padma Lakshmi 3.80E+05 13 

   Elizabeth Hurley 3.80E+05 19 
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2.3.1. Dependent Variables 

The variables of interest in this research are duration and volume of retweets. 

Duration of retweets is a measure of how long a tweet has been shared, whereas volume of 

retweet is a measure of how many times it has been shared. The longer a tweet lives on 

social media (higher duration of retweet), the higher chance it has to be seen (and shared). 

Therefore, a longer duration of retweets increases volume of retweets, and more generally, 

it increases its effectiveness and reach. On the other hand, if a tweet has been shared more 

frequently (higher volume of retweet), it has been diffused deeper and wider to social 

networks. Therefore, it will have a higher chance to be seen and retweeted, which 

subsequently increases duration of retweets. As a result, duration and volume of retweet 

are two inter-dependent variables. Hence, our data collection algorithm and modeling 

approach should consider their dependency.  

Duration of Retweet 

Duration of retweets is simply defined as a period, over which a tweet has been 

retweeted. More specifically, it is the time elapsed after posting a tweet to its last retweet. 

Since contents on twitter exist forever, theoretically, a tweet has a chance of being 

retweeted at any time, hence, duration of retweet changes. However, twitter is an 

immediate social network, and tweets receive attention from individuals after their posting, 

until the point that the tweet will not be retweeted as frequently as before. Therefore, we 

define duration of retweet as the period that most of the retweets occur. More formally, we 

observe duration through a data collection algorithm that includes two identical periods,  
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observation period, and confirmation period. Figure 2.1 shows the two periods with respect 

to posting time of a tweet. The tweets are tracked within the observation period in order to 

measure (observe) duration of retweets, and confirmation period is used to confirm that 

they have not been retweeted. More specifically, we have two scenarios across all tweets: 

1- Last retweet of a tweet happened during the observation period, and there is no retweet 

in the confirmation period. In this case, we observe the duration of retweet by taking 

the difference between the time of last retweet and the time of tweet posted. 

2- The tweet has been retweeted during both observation period and confirmation period. 

In this case, we considered the tweet to be censored with respect to the end of 

observation period, and the duration is equal to the length of observation period.  

It can be understood that the length of observation and confirmation periods will 

have an impact of what proportion of the observations are censored and what proportion 

are not censored. In other words, if we take a short interval for the two periods, most of the 

observed durations will be censored, which is not favorable in order to make inference. In 

order to make objective selection of the length of periods, we chose the length such that 

80% of the observations are not censored and 20% of the observations are censored. Given 

this criterion, the length of the two periods is 28.7 days. In all, we have 2935 observations 

 
Figure 2.1 – Observation and Confirmation Period Relative to Tweet Posting Time 
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in our dataset, where 563 observations are censored. Figure 2.2 shows distribution of 

duration, and the black column shows the proportion of the censored observations. 

 

Figure 2.2 – Histogram of Retweet Duration (in days) 

 

Volume of Retweet 

The retweet volume is a measure of how many times a tweet has been shared. Since 

we observed the duration in a censoring algorithm that has been described above, the 

volume of retweet variable is also affected by how we observed duration. In specific, if the 

tweet has been retweeted only during the observation, and not in the confirmation period, 

we will take the retweet count at its last retweet as the volume of retweet. In the case that 

the tweet has been retweeted both in the observation and confirmation period, we observed 

the retweet count at the end of observation period, but we consider such observations as 
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censored, as in the case of the duration. In other words, we do not observe the final retweet 

volume for the censored observations, and we only observe volume, up to the censored 

time, and we assume that the final retweet count will be more than what we observed. 

Figure 2.3 shows the histogram of log(retweet volume) for the censored and non-censored 

observations. 

 

Figure 2.3 – Histogram of LOG(Retweet Volume), the blue bars (on left) are non-

censored tweets, the pink bars (on right) are censored, and the overlapping area is in 

violet (in the middle). 
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2.3.2. Tweet Characteristics  

In this research, we incorporate two indicator variables for tweet type. In addition 

to tweeting their own status, sometimes, celebrities reply to the follower’s tweet. Also, 

rather than composing a tweet themselves, celebrities share (retweet) a tweet originally 

posted by other users. In both situations, receivers of the tweet could spot that the tweet 

neither is meant for general audience (reply tweet) nor is directly from the celebrity 

(retweet). In specific, we included these two variables as below. 

- REPLY: an indicator variable, which takes the value of one, if the tweet is a reply 

to another user 

- RETWEET: an indicator variable, which takes the value of one, if the tweet is a 

retweet of another person’s tweet 

In addition to tweet types, we also incorporated five indicator variables based on 

tweet content. In specific, we incorporated the following variables. 

- HASH: an indicator variable for the presence of hashtag (#) in the tweet  

- QUES: an indicator variable for the presence of question mark (?) in the tweet 

- EXCL: an indicator variable for the presence of exclamation mark (!) in the tweet 

- LINK: an indicator variable for the presence of any link in the tweet 

- LEN: this variable measures length of tweet in terms on number of characters 

Table 2.3 provides summary statistics for the covariates.  
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Table 2.3 – Summary statistics of covariates 

Variable Yes No 

REPLY 998 1937 

RETWEET 252 2683 

HASH    647   2288 

QUES 341 2594 

EXCL 1128   1807 

LINK 1275 1660 

 Mean Std Min 25% Median 75% Max 

LEN 92.72 35.82 2 65 99 124 149 

2.3.3. Celebrity Characteristics 

We included celebrities’ number of followers as a proxy for their popularity in our 

study. It can be understood that as a celebrity becomes more popular, the chance that he/she 

will get followers on social media will be higher; hence, number of followers is a good 

proxy for celebrity popularity. This variable in observed at a celebrity level, hence for all 

tweets posted by a celebrity, it will be identical. The number of followers for all the pages 

has been shown in Table 2.2. 
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2.4. Modeling Approach 

In this section, first, we present modeling approach for duration and volume, then, 

we discuss issues of censoring, covariates, unobserved heterogeneity, and joint model. 

2.4.1. Model for Duration 

We used a proportional hazard model for the duration of retweets. We assumed a 

Weibull baseline hazard function for the proportional hazard model. In specific, let 𝑡𝑖 be 

the duration of retweets for tweet 𝑖, then the baseline hazard and the respective probability 

density function are, 

ℎ(𝑡𝑖|𝛼, 𝜆𝑖
𝐷𝑈) = 𝛼 𝜆𝑖

𝐷𝑈 𝑡𝑖
𝛼−1 

𝑡𝑖|𝛼, 𝜆𝑖
𝐷𝑈 ~ 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼, 𝜆𝑖

𝐷𝑈) = 𝜆𝑖
𝐷𝑈 𝛼 𝑡𝑖

𝛼−1 𝑒𝑥𝑝(−𝜆𝑖
𝐷𝑈𝑡𝑖

𝛼)          (2.1) 

Where 𝜆𝑖
𝐷𝑈 is the tweet specific scale of Weibull distribution (the superscript 𝐷𝑈 stands 

for duration) and 𝛼 is the shape parameter of the distribution. In this representation of the 

Weibull proportional hazard model, the survival probability is 𝑆(𝑡𝑖|𝛼, 𝜆𝑖
𝐷𝑈) =

exp(− 𝜆𝑖
𝐷𝑈𝑡𝑖

𝛼). In order to verify suitability of the Weibull model, one would look to the 

following relationship: log (− log (𝑆(𝑡𝑖|𝛼, 𝜆𝑖
𝐷𝑢))) = log( 𝜆𝑖

𝐷𝑈) + 𝛼 log(𝑡𝑖), derived from 

the survival probability. As a result, a plot of log (− log (𝑆(𝑡𝑖|𝛼, 𝜆𝑖
𝐷𝑈))), estimated non-

parametrically, against log(𝑡𝑖) should be approximately linear. We used the Kaplan-Meier 

non-parametric estimate of the survival probabilities and Figure 2.4 shows the graph of the 

two above terms. Based on the figure Figure 2.4, the relationship is close to linear, which 

shows that Weibull specification of the hazard model is suitable. 
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Figure 2.4 – Plot of 𝑙𝑜𝑔(𝑡) vs. 𝑙𝑜𝑔(− 𝑙𝑜𝑔(𝑆(𝑡))) showing suitability of Weibull Model 

  

2.4.2. Model for Volume 

We employed an empirical count model to represent the observed volume of the 

retweets. Based on the overall shape of the retweet count distribution on Figure 2.3, it can 

be seen that the observed retweet count has larger variance than mean; hence, it is over-

dispersed, which makes the Poisson model unsuitable. Therefore, we adopted a mixture of 

Poisson distribution to overcome the over-dispersion. In specific, let 𝑁𝑖 be the observed 

retweet count of the tweet 𝑖. 

𝑁𝑖  ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑖
𝑉𝑂) ∝

𝜆𝑖
𝑉𝑂𝑁𝑖

𝑁𝑖!
                (2.2) 
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The 𝜆𝑖
𝑉𝑂 is the mean of distribution (the superscript 𝑉𝑂 stands for the model of 

retweet volume). We will specify a normal distributed additive random term in sequel 

(unobserved heterogeneity section), which captures over-dispersion. In the next sections, 

we specify the censoring, covariates, unobserved heterogeneity, and joint model. 

2.4.3. Censoring 

The data collection mechanism is such that duration and volume of retweets are 

censored for some tweets. For such tweets, we specify the model through the survival 

function of their respective distribution, since we only observe that their “true” observed 

value for duration and volume is larger than what we observed. In specific, we specify the 

survival function of the duration model and count model as follows: 

𝑆(𝑁𝑖) = 1 −
Γ(⌊𝑁𝑖 + 1⌋, 𝜆𝑖

𝑉𝑂)

⌊𝑁𝑖⌋!
 

𝑆(𝑡𝑖) =  𝑒𝑥𝑝(−𝜆𝑖
𝐷𝑈𝑡𝑖

𝛼) 

Where Γ( ) is the incomplete gamma function and ⌊ ⌋ is the floor function. 

2.4.4. Covariates, Unobserved Heterogeneity, and Joint Model 

In order to include tweet specific covariates into our model, as well as brand effects, 

we write the scale parameter of the hazard model (in logarithm scale), and the mean of the 

count model (in logarithm scale) with respect to the covariates. In specific, let tweet 𝑖 

posted by celebrity 𝑗, 𝑗 = 1 … 𝐽 with the scale parameter of  𝜆𝑖𝑗.  

𝑙𝑜𝑔(𝜆𝑖𝑗
𝐿 ) = 𝜇𝑖𝑗

𝐿 ,    𝐿 = 𝐷𝑈 𝑜𝑟 𝑉𝑂 
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We specify 𝜇𝑖𝑗
𝐿  with respect to a celebrity specific covariate, discussed in 

section 2.3.3, and tweet specific covariates discussed in section 2.3.2 as below, 

𝜇𝑖𝑗
𝐿 =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 +  𝑁𝑈𝑀. 𝐹𝑂𝐿𝑗  𝛾𝐿 +  𝑅𝐸𝑃𝐿𝑌𝑖 𝛽1

𝐿 + 𝑅𝐸𝑇𝑊𝐸𝐸𝑇𝑖 𝛽2
𝐿 +  𝐻𝐴𝑆𝐻𝑖 𝛽3

𝐿

+  𝑄𝑈𝐸𝑆𝑖 𝛽4
𝐿 +  𝐸𝑋𝐶𝐿𝑖  𝛽5

𝐿 +  𝐿𝐼𝑁𝐾𝑖 𝛽6
𝐿 +  𝐿𝐸𝑁𝑖  𝛽7

𝐿 ,        𝐿 = 𝐷𝑈 𝑜𝑟 𝑉𝑂 

As we discussed in the theoretical background section, we want to examine the 

effect of celebrity popularity on how the message characteristics are perceived. Therefore, 

we include the interaction term of celebrity’s number of followers with the tweet specific 

covariates. The main effects of tweet characteristics are captured through 𝛽1
𝐿 … 𝛽7

𝐿, and the 

interaction effect of celebrity popularity with the tweet content are captured through 

𝛼1
𝐿 … 𝛼7

𝐿. In specific, we have the following specification for 𝜇𝑖𝑗
𝐿 . 

𝜇𝑖𝑗
𝐿 =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝐿 +  𝑁𝑈𝑀. 𝐹𝑂𝐿𝑗  𝛾𝐿 + 𝑅𝐸𝑃𝐿𝑌𝑖 (𝛽1

𝐿 + 𝛼1
𝐿 𝑁𝑈𝑀. 𝐹𝑂𝐿𝑗)

+ 𝑅𝐸𝑇𝑊𝐸𝐸𝑇𝑖 (𝛽2
𝐿 + 𝛼2

𝐿 𝑁𝑈𝑀. 𝐹𝑂𝐿𝑗) + 𝐻𝐴𝑆𝐻𝑖 (𝛽3
𝐿 + 𝛼3

𝐿 𝑁𝑈𝑀. 𝐹𝑂𝐿𝑗)

+ 𝑄𝑈𝐸𝑆𝑖 (𝛽4
𝐿 + 𝛼4

𝐿 𝑁𝑈𝑀. 𝐹𝑂𝐿𝑗) +  𝐸𝑋𝐶𝐿𝑖 (𝛽5
𝐿 + 𝛼5

𝐿 𝑁𝑈𝑀. 𝐹𝑂𝐿𝑗)

+ 𝐿𝐼𝑁𝐾𝑖 (𝛽6
𝐿 + 𝛼6

𝐿 𝑁𝑈𝑀. 𝐹𝑂𝐿𝑗)

+ 𝐿𝐸𝑁𝑖 (𝛽7
𝐿 + 𝛼7

𝐿 𝑁𝑈𝑀. 𝐹𝑂𝐿𝑗),                𝐿 = 𝐷𝑈 𝑜𝑟 𝑉𝑂 

We observed few tweet attributes, but since tweet attributes cannot be captured 

fully through the variables that we included in our model, we included an additive frailty, 

𝛿𝑖
𝐷𝑈 into the duration model, and a random term, 𝛿𝑖

𝑉𝑂 in the volume model. We also specify 

their joint distribution, in order to capture the relationship between volume and duration of 

the retweets, through a bivariate normal distribution between the two random terms. In 
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order to guarantee identification of the intercepts in both models, the frailty and random 

term should have mean of zero. In specific, 

log(𝜆𝑖𝑗
𝐿 ) = 𝜇𝑖𝑗

𝐿 + 𝛿𝑖
𝐿,  𝐿 = 𝐷𝑈 𝑜𝑟 𝑉𝑂 

𝛿𝑖
𝐷𝑈, 𝛿𝑖

𝑉𝑂 ~ 𝐵𝑉𝑁([
0
0

] , Σ2×2) 

In addition, there will be unobserved characteristics of the celebrities such as 

attractiveness, which may not be captured by number of followers. In order to capture such 

effects, we included celebrity specific random effect, 𝜂𝑗
𝐷𝑈 and 𝜂𝑗

𝑉𝑂, for both models. 

Therefore, the full specification of mean and scale parameters are, 

log(𝜆𝑖𝑗
𝐿 ) = 𝜇𝑖𝑗

𝐿 + 𝛿𝑖
𝐿 + 𝜂𝑗

𝐿,     𝐿 = 𝐷𝑈 𝑜𝑟 𝑉𝑂 

𝜂𝑗
𝐿 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜏𝜂

𝐿),     𝐿 = 𝐷𝑈 𝑜𝑟 𝑉𝑂 

2.4.5. The Likelihood Function 

For non-censored tweets, the likelihood is (𝜆𝑖
𝐷𝑈 𝛼 𝑡𝑖

𝛼−1 𝑒𝑥𝑝(−𝜆𝑖
𝐷𝑈𝑡𝑖

𝛼)). (
𝜆𝑖

𝑉𝑂𝑁𝑖

𝑁𝑖!
), 

where 𝑡𝑖 is the observed duration of retweets, 𝑁𝑖 is the observed retweet volume, 𝜆𝑖
𝐷𝑈 and 

𝜆𝑖
𝑉𝑂 are specified above. However, for the censored observations, the likelihood is the 

product of the two survival functions, (exp(−𝜆𝑖
𝐷𝑈𝑡𝑖

𝛼)). (1 −
Γ(⌊𝑁𝑖+1⌋,𝜆𝑖

𝑉𝑂)

⌊𝑁𝑖⌋!
). The full 

likelihood function of tweet 𝑖 by considering censoring variable, 𝐶𝑖 (=1 if censored) is, 

((𝜆𝑖
𝐷𝑈 𝛼 𝑡𝑖

𝛼−1 𝑒𝑥𝑝(−𝜆𝑖
𝐷𝑈𝑡𝑖

𝛼)). (
𝜆𝑖

𝑉𝑂𝑁𝑖

𝑁𝑖!
))

1−𝐶𝑖

((exp(−𝜆𝑖
𝐷𝑈𝑡𝑖

𝛼)). (1 −
Γ(⌊𝑁𝑖 + 1⌋, 𝜆𝑖

𝑉𝑂)

⌊𝑁𝑖⌋!
))

𝐶𝑖
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2.4.6. Model Estimation 

We estimated the proposed model in a Bayesian framework through BUGS 

software. We specified prior distribution of model parameters, and employed MCMC 

methods to simulate from posterior distribution of the model parameters, and make 

inference based on the 95% posterior intervals. The prior specifications for the coefficients 

of the covariates (all 𝛽’s and 𝛼’s) and intercepts of the model, 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑘
𝐿, are normal with 

zero mean and large variance. The prior for the precision parameters of the celebrity 

random effects, 𝜂𝐷𝑈 and 𝜂𝐶𝑂, and shape parameter of the Weibull model are 

𝐺𝑎𝑚𝑚𝑎(0.001,0.001). Finally, the prior distribution for precision matrix of the joint 

random effects, Σ2×2, is Wishart with scale of [
0.001 0

0 0.001
] and degree of freedoms of 

two. We estimated the model with burn-in of 100K, thinning of 100 with the final sample 

from 1000 iterations. Convergence has been assured graphically across two chains. 

2.4.7. Model Fit 

In order to ensure models performance in terms of its fit and predictive 

performance, for the duration model, we calculated the predictive survival probability for 

the tweets in our sample, which is the probability that predicted duration of retweets is 

equal of greater than observed duration. In specific, we calculated 
∑ 𝑒𝑥𝑝(−�̂�𝑖

𝐷𝑈𝑡𝑖
�̂�)𝑖

𝑁
, where 

�̂�𝑖
𝐷𝑈  and �̂� are the estimated values of these parameters in each MCMC iteration, and 𝑡𝑖 is 

the observed duration, and 𝑁 is sample size. We also calculated a discrepancy measure 

between the predictive distribution and data for the count model, which has been discussed 

in section 1.4.1. 
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2.5. Results 

In the following two sections, we discuss results of duration and volume model. 

2.5.1. Duration of Retweet 

Table 2.4 presents estimated coefficients of duration model. It is noteworthy to 

mention that since we modeled hazard rate, therefore, estimated coefficients demonstrate 

effects of included variables on the hazard rate, and this has to be taken into consideration 

in order to interpret signs of the coefficients. In the case of negative coefficients, the 

variable will reduce the hazard rate, or decrease probability of failure, hence it increases 

the duration, and vice versa for positive coefficients. We present the results of tweet type, 

tweet content, and other parameters of the model.  

Tweet Type 

Tweet type of REPLY has a significant positive effect on hazard, which means the 

duration of retweet for these tweets is less than regular tweets. Since REPLY tweets are 

posted directly to an individual, and are not posted for general audience, therefore, they 

will be less relevant to all followers. As a result, retweeting the REPLY tweets will provide 

less benefit to the individuals in terms of self-enhancements purposes. However, the 

interaction of REPLY with NUM.FOL does not have a significant effect on hazard. The 

second variable of tweet type, RETWEET, has a significant positive effect on hazard, 

which means these tweet will have less duration of retweets. The RETWEET tweets are 

originally posted by another user, and a celebrity retweeted that tweet to his/her followers. 

Clearly, it is not an original tweet by celebrities, and although it might be relevant to general 

audience, since the original poster of the tweet is not the celebrity, hence the self-
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enhancement purposes that individuals might want to signal by retweeting, will not be 

satisfied. However, its interaction with NUM.FOL is not significant. 

Table 2.4 – Estimated parameters of duration model 

  Mean 2.5% Median 97.5% 

Tweet Type     

𝛽1
𝐷𝑈 REPLY ** 2.05 1.61 2.04 2.64 

𝛼1
𝐷𝑈     REPLY × NUM.FOL -0.25 -0.62 -0.25 0.11 

𝛽2
𝐷𝑈 RETWEET ** 1.65 1.16 1.63 2.25 

𝛼2
𝐷𝑈     RETWEET × NUM.FOL -0.44 -1.11 -0.44 0.21 

 

Tweet Content 
    

𝛽3
𝐷𝑈 HASH ** -0.35 -0.64 -0.34 -0.05 

𝛼3
𝐷𝑈     HASH × NUM.FOL ** -0.60 -0.91 -0.60 -0.31 

𝛽4
𝐷𝑈 EXCL 0.20 -0.03 0.20 0.47 

𝛼4
𝐷𝑈     EXCL × NUM.FOL 0.10 -0.18 0.10 0.37 

𝛽5
𝐷𝑈 QUES ** 0.33 0.01 0.32 0.65 

𝛼5
𝐷𝑈     QUES × NUM.FOL -0.28 0.13 0.39 -0.72 

𝛽6
𝐷𝑈 LINK ** 0.62 0.33 0.62 0.97 

𝛼6
𝐷𝑈     LINK × NUM.FOL ** 0.38 0.08 0.38 0.69 

𝛽7
𝐷𝑈 LEN -0.01 -0.12 -0.01 0.09 

𝛼7
𝐷𝑈     LEN × NUM.FOL ** 0.27 0.14 0.27 0.41 

 

Celebrity Attribute 
    

𝛽8
𝐷𝑈 NUM.FOL ** -2.02 -2.76 -2.01 -1.37 

      

Other Parameters of Model     

𝛼  1.37 1.18 1.63 1.37 

𝜏𝜂
𝐷𝑈  0.16 0.09 0.26 0.16 

Σ[2,2]  0.39 0.22 0.62 0.39 

𝜌  -0.73 -0.76 -0.69 -0.73 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝐷𝑈  -3.91 -4.96 -3.01 -3.91 
  ** 95% probability interval does not include zero 

 

Tweet Content 

Presence of hashtag in a tweet, HASH, has a significant negative effect on hazard. 

Presence of a hashtag in a tweet makes that phrase to stand out against other words. As a 
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result, the required effort to process a hashtag is less, which due to satisfying effort 

minimization metagoals, ultimately makes the message to be retweeted more. The 

interaction effect of NUM.FOL and HASH has a positive effect on duration, which means 

a hashtag used by celebrities that are more popular will be more effective compared to less 

popular ones. This is consistent with the two metagoals of benefit maximization, and effort 

minimization, since, in the case of a more popular celebrity tweeting using a hashtag, both 

metagoals are present, more self-enhancement, and less effort to process, hence increase 

retransmission of tweets. The effects of EXCL and its interaction with NUM.FOL on 

duration of retweets are not significant. However, QUES has a negative effect on duration 

of retweet. Presence of question mark signals that a tweet contains a question, which 

requires additional effort by receivers to be ready for retweeting. Therefore, individuals 

might avoid such effort and avoid retweeting that. The interaction of QUES with number 

of followers is not significant. The presence of LINK on a tweet has a positive effect on 

hazard or a negative effect on duration. As discussed, individuals rely on message source 

to make their sharing decision, and with the case of no link on the tweet, they could easily 

make their decision either to retweet or not, since there is no additional content to evaluate 

or check. However, in the case of presence of LINK in a tweet, individuals may want to 

check out the link before actually share that. Therefore, there is an additional action to be 

taken by individuals before making their decision. In the case of checking the LINK, they 

may be exposed to the LINK content, and possibly change their mind in terms of 

retweeting. In other words, presence of LINK in a tweet makes the decision of retweeting 

to be less relied only on the source and more on the additional content through the link. Its 

interaction with NUM.FOL is significant, which means for a more popular celebrity, this 
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effect is even more negative. The effect of tweet length, LEN, on duration is not significant, 

but its interaction with NUM.FOL has a positive effect on hazard. That is, for a celebrity 

with more number of followers, a shorter message will have more retweet duration. 

Celebrity Attribute 

The effect of number of followers on hazard is negative, which means more number 

of followers lead to higher duration. This meets our expectations, since a celebrity with 

more number of followers is possibly more popular among his/her followers; hence as a 

source of message, it affects how individuals respond to the tweets posted by him/her. In 

addition to the effect of NUM.FOL, we controlled for unobserved characteristics of the 

celebrities. Figure 2.5 shows the estimated random effects of these random effects.  

Other Parameters of Duration Model 

Table 2.4 shows estimates of other model parameters. The shape parameter of 

Weibull model, 𝛼, is 1.34. Since it is larger than one, it means the baseline hazard rate will 

increase as time goes by, which is an expected shape. The precision parameter of brand’s 

random effect is 0.18, which is relatively small, and it signals, other than number of 

followers, there are other attributes, which affect the duration of retweets. The precision of 

frailty is 0.41, which means there are also some unobserved attributes for the tweets. The 

correlation between the frailties is -0.73, which is relatively a very strong relationship. The 

negative sign means higher volume of retweets will reduce the probability of failure 

(hazard) or increase the duration, and these two are associated to each other. 
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Figure 2.5 – Boxplot of the estimated celebrity random effects in the duration of 

retweets model 
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2.5.2. Volume of Retweet 

Table 2.5 provides estimated parameters of the volume model. We present results 

of variables in each segment as below. 

 Tweet type 

Based on the 95% probability intervals, the effect of REPLY tweet on retweet 

volume is significant and negative. This effect is consistent with the results of duration 

model. Since REPLY tweets are meant for a specific individual, therefore, they will be less 

relevant to all followers, and the utility of retweeting for other followers will be less 

compared to a regular tweet. However, the interaction effect of REPLY and NUM.FOL is 

not significant. The effect of RETWEET on volume of retweet is also negative, which is 

consistent with our expectations. Since it is not an “original” tweet by celebrities, and it is 

a retweet of a tweet posted by someone else, therefore, the benefit of sharing will be less 

for their followers. Interestingly, its interaction effect does not have a significant effect on 

volume of retweet.  
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  Table 2.5 – Estimated parameters of volume model 

  Mean 2.5% Median 97.5% 

Tweet Type     

𝛽1
𝑉𝑂 REPLY ** -2.25 -2.45 -2.25 -1.94 

𝛼1
𝑉𝑂     REPLY × NUM.FOL 0.20 -0.15 0.20 0.64 

𝛽2
𝑉𝑂 RETWEET ** -1.04 -1.24 -1.04 -0.84 

𝛼2
𝑉𝑂     RETWEET × NUM.FOL 0.03 -0.29 0.03 0.34 

 

Tweet Content 
    

𝛽3
𝑉𝑂 HASH ** 0.16 0.05 0.16 0.33 

𝛼3
𝑉𝑂     HASH × NUM.FOL ** 0.28 0.17 0.25 0.55 

𝛽4
𝑉𝑂 EXCL ** -0.18 -0.34 -0.17 -0.07 

𝛼4
𝑉𝑂     EXCL × NUM.FOL 0.01 -0.15 0.02 0.12 

𝛽5
𝑉𝑂 QUES ** -0.22 -0.38 -0.23 -0.03 

𝛼5
𝑉𝑂     QUES × NUM.FOL 0.13 -0.19 0.15 0.31 

𝛽6
𝑉𝑂 LINK ** -0.28 -0.40 -0.28 -0.16 

𝛼6
𝑉𝑂     LINK × NUM.FOL 0.03 -0.11 0.05 0.14 

𝛽7
𝑉𝑂 LEN -0.01 -0.05 -0.01 0.03 

𝛼7
𝑉𝑂     LEN × NUM.FOL ** -0.22 -0.34 -0.22 -0.11 

 

Celebrity Attribute 
    

𝛽8
𝑉𝑂 NUM.FOL ** 1.86 1.83 1.86 1.88 

 

Other Parameters of Model 
    

𝜏𝜂
𝑉𝑂  0.27 0.18 0.27 0.37 

Σ[1,1]  1.36 1.20 1.36 1.55 

𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡𝑉𝑂  6.82 6.79 6.82 6.85 

 

 

Tweet Content 

Tweet content consists of five variables in our analysis. Presence of hashtag in a 

tweet increases volume of retweet. This is consistent with our expectations, since presence 

of hashtag, makes the word or phrase to stand out, and gets the attention of receivers. 

Therefore, it reduces the effort to process information; hence, it has a positive effect on 

retweet volume. The effect of its interaction with NUM.FOL is positive, which means 

tweets with hashtags posted by celebrities that are more popular will have higher volume 
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of retweets. This effect is consistent with the interaction effect of HASH and NUM.FOL 

on duration model. Since the keywords and important words in a text are used as hashtag, 

therefore, the retransmission decision is very easy for the case of a more popular celebrity 

tweeting about an important topic highlighted through hashtag. The effect of EXCL is 

negative on volume of retweet, whereas its interaction does not have a significant effect. 

The effect of QUES on retweet volume is negative. Since presence of question mark signals 

a question, therefore, it requires additional effort, such as adding an answer, for the 

recipient in order to make it ready for sharing. Therefore, due to the additional effort 

required, its negative effect is expected. Its interaction effect with NUM.FOL is positive, 

but it is not significant. The presence of LINK in a tweet is negative and significant. This 

is the same effect as the duration model. Presence of a LINK makes the receiver to check 

it out before retransmitting, which requires additional effort by them, but by considering 

the LINK and its content, individuals might think the benefit they want to gain by sharing 

will be lower due to the content of the link. In addition, since we did not characterize the 

link type, so there might be a mixed effect here. The interaction effect of LINK and 

NUM.FOL is not significant. The effect of tweet length, LEN, is not significant; however, 

its interaction effect is significant and negative. That means a shorter message will have 

more volume of retweets in the case of more popular celebrities. 
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Celebrity Attribute 

The effect of number of followers on volume of retweet is significant and positive. 

That means a larger network size for a celebrity leads to a higher volume of retweet. 

However, the number of followers on social media for celebrities is mainly due to their 

attractiveness, competence, and influence in the real world, therefore, we could conclude 

that those attributes correlates with volume of retweet for the tweets posted by them. 

Figure 2.6 provides boxplots of celebrities’ random effects, which captures unobserved 

characteristics of them. 

Other Parameters of Volume Model 

 The precision parameter of celebrity random effect is 0.3, which means there are 

some unobserved characteristics of the celebrities that were not captured by number of 

followers. The precision parameter of frailty is 1.36, which is not large, but is served its 

purpose. The intercept of the model 6.6, which is a large value compared to previous 

studies, which means response to tweets posted by celebrities are fairly more than other 

categories. That could be due to average number of followers of celebrities versus other 

brands.   
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Figure 2.6 – Boxplot of the estimated celebrity random effects in the retweet volume 

model 
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2.6. Discussion 

In this research, we examined retweet volume and duration of tweets posted by 65 

celebrities across seven subcategories of entertainment industry. By considering source 

effect theory, we considered the effect of source popularity measured by number of 

followers on how tweet attributes affect volume and duration of retweet. We showed that 

source characteristics moderate effects of few tweet characteristics on volume and duration 

of retweets. However, most of the tweet characteristics effects on volume and duration 

were identical in terms of significance and direction. In addition, as expected, we found 

that volume and duration of retweet are highly associated. 

2.6.1. Managerial Implications 

In this research, we found that tweet source acts as a message cue and affects how 

receivers evaluate content, in order to make a decision to retransmit a tweet. Our findings 

have several implications for brands. It could help brands to choose among social media 

celebrities, through which, they could send out a tweet about brands. We also showed that 

few tweet attributes might not be suitable in the case of tweets by celebrities. Brands should 

consider those aspects in order to increase tweets’ effectiveness in social media. In 

addition, our findings could have implications beyond the case of celebrity-sponsored 

tweets. By considering effect of tweet source on the response to the posted tweet, brands 

could investigate on content types or attributes that work better with their overall image 

and strategy, which subsequently can be incorporated into their social media content 

strategy, and makes their social media activities more effective. 
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Our findings have implications beyond Twitter, and apply to other social networks 

as well. Twitter is a social network that generally involvement is lower, compared to more 

information rich social networks such as Facebook, Instagram, or YouTube. It also weights 

immediacy and quickness, which is different from nature of other social networks. We 

argued that since involvement is low in twitter, message source acts as cue in the decision 

making process to retransmit a message. We believe that source effect will be less 

prominent on information rich and involving social media channels, since the content will 

have a more important role on sharing decision. Nevertheless, we believe that there will be 

differences between celebrities and ordinary individuals, and in the case of celebrities, 

message attributes will be less important, due to the influence of celebrities on their 

followers.  

2.6.2. Limitation, and Future Studies 

One limitation of our research lies on the celebrities we considered in this research. 

We investigated top celebrities in each category, and our results may not be generalizable 

to social media celebrities, also known as “micro-celebrities”. These groups of celebrities 

acquired substantial amount of followers, only through their appealing contents on social 

media. They are also becoming a venue for marketing purposes, but they are mostly known 

in a particular area such as beauty, fashion, and home design. Our dataset included the 

well-known celebrities, and our results may not be applicable to micro-celebrities, because 

they acquired their followers only through their social media activities, and compared to 

most-well-known celebrities, they might even have a higher influence on their followers. 
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Our research showed the effect of source on how retransmission of tweets varies. 

This could be a starting point on investigating several aspects of source characteristics on 

social media responses. Utilizing celebrities and their effects as message source have been 

investigated in marketing literature extensively. Potential research questions such as match 

between celebrity and brand could have implications for promoting tweets. In addition, 

understanding celebrity attributes such as attractiveness, credibility and trustworthiness 

that could lead to likeability and persuasiveness of their tweets on social media is an avenue 

for further research.  
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3. Essay 3: Velocity of Retweeting: Insights from Celebrity Tweets 

 

3.1. Introduction 

With the growing use of social media by individuals and marketers, it became an 

environment, where enormous amount of contents are generated and consumed every day. 

For instance, more than 500 million tweets are posted each day, and this number is 

increasing as well (Internet Stats 2015). This high pace of content generation leads to 

competition between contents in order to get attention of individuals. In addition, 

generation of new contents pushes older ones out of the competition, which subsequently 

makes the older ones to lose their relevance and effectiveness, and fade out into social 

media crowd. As a result, in context of communicating messages on a social network, 

brands not only look for a high volume of response to their messages, but also strive for a 

higher response rate for them. In other words, contents posted by brands on social media 

should generate higher response (of any kind) in a short period, and before new-coming 

contents crowd them out. Therefore, understanding what leads to a higher response rate of 

contents posted on social media is an important issue for marketers. 

In addition to sending messages directly to their followers through their official 

social media accounts, marketers also employ celebrities, where celebrities send out 

messages (i.e. tweets) about brands on social media. For instance, T-Mobile sponsored a 

celebrity for their TV ads mainly because of the celebrity’s strong presence on social media 

(Ad Age 2015). She communicated about T-Mobile through her Twitter account as well. 

Since celebrities are among the most followed users on social media, marketers not only 
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reach celebrities’ followers by sending messages through them, but also gain additional 

reach for their messages through receivers of the messages sharing them with their 

followers. While in this first scenario, marketers gain substantial exposure for their brands 

through reaching celebrities’ followers, but in the latter case, marketers will advantage 

through spreading their messages through ordinary individuals, where they advocate the 

celebrity and brand. While both purposes are favorable, however, we focus on the second 

scenario in this research. In the face of content competition on social media, and in the case 

of celebrities' followers sharing messages posted by celebrities, a higher retransmission 

rate for the message is desired. Such a faster rate leads to a faster spread of the message on 

social media, which makes the message to stand out against the competition, and ultimately 

increases its effectiveness. Therefore, in the case of promoting message through celebrities 

on social media, understanding celebrity attributes and content characteristics that lead to 

a higher spread rate of the content posted by them on social media is critical. 

Despite widespread use of celebrities on social media for marketing purposes, and 

importance of spread rate in the case of celebrity-sourced tweets, there are few insights 

regarding role of celebrity attributes and message characteristics on how fast messages 

posted by celebrities will spread on Twitter. Existing literature on this issue focuses on 

diffusion over social networks, and in context of online games (Schulze et al. 2014), 

adoption of social networks (Katona et al. 2011), and UGC (user-generated contents) (Liu-

Thompkins and Rogerson 2012). Findings highlight effects of network size 

(Yoganarasimhan 2012), network structure (Watts and Dodds 2007), influencers (Aral and 

Walker 2012), content (Berger and Milkman 2012), and seeding strategies (Hinz et al 2011) 

on diffusion over social networks. However, these findings were in a different context, 
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where retransmission mechanism and incentives to adopt are different from case of sharing 

a message on Twitter. In addition, current research examines spread rate of content posted 

through official account of a brand (celebrities), whereas previous researches mainly 

focused on UGC. 

In this research, we consider tweets posted by celebrities, and examine effects of 

celebrity attributes and content characteristics on retweet rate of the tweets posted by them. 

Our empirical analysis is based on 2486 tweets posted by 60 celebrities across five 

categories of “Musician”, “Television Actors/Actress”, “Actor/Actress”, “Athletes”, and 

“Personalities” (TV and Radio celebrities). We considered the celebrities within the “2014 

The World’s Most Powerful Celebrities” published by Forbes. We considered “original” 

tweets posted by these 60 celebrities during month of February 2015. We observed number 

of retweets within approximate 15 minutes intervals during first 24 hours of the tweets’ 

life. We examined role of celebrity’s popularity measured by number of followers on how 

fast the tweets are retweeted. We also examined effects of several tweet attributes such as 

presence of photo, link to additional content, hashtag, question mark, exclamation mark on 

retweet rate. In addition, since Super Bowl, Grammy’s, and Oscars happened during the 

month of February 2015, we identified tweets that contained words related to these events 

and examined role of such event related content on retweeting rate. Furthermore, by 

considering category of the celebrities posting about an event-related content, we examine 

effect of “match” between category of tweet sender and tweet content on retweet rate. We 

also considered match between the event-related content and event timing. For our 

modeling approach, we employed a Modulated Poisson Process model (Soyer and 

Tarimcilar 2008), where the observed count in every observed time-window follows a 



www.manaraa.com

76 

 

Poisson model with a rate that varies based on time, tweet characteristics, and celebrity 

attributes. In addition to the observed celebrity and tweet characteristics, we also controlled 

for their unobserved characteristics through random effects. 

Our results suggest that presence of a link in a tweet reduces the retweet rate, and 

type of the link affects the retweet rate as well. In addition, we found that presence of 

hashtag reduces the retweet rate, but presence of a photo in a tweet increases the retweet 

rate. Among the event related variables, only presence of Oscar related content had a higher 

retweet rate. However, an interesting finding is about timing of the event and event-related 

content. For all three cases of Super Bowl, Grammy, and Oscar, we found that contents 

related to these events have a higher retweet rate if they are posted when the event is in 

progress. Regarding the effect of celebrities, we found that celebrities’ number of followers 

has a positive effect on retweet rate, but there are unobserved characteristics of celebrities, 

which result in higher retweet rate. Our findings could help brands and marketers in several 

ways. First, insights from effect of celebrities’ number of followers and their unobserved 

characteristics help brands to choose celebrities for their marketing purposes on social 

media. Second, our findings on the effect of content characteristic can be used for designing 

branded-contents that generate higher response rate. Third, we empirically showed the 

effectiveness of event-related content during the event, which suggests that brands could 

increase their social media effectiveness by carefully planned campaigns for events. 

In the next section, we discuss related literature. We follow that with a description 

of our data. Subsequently, we present our modeling approach, and next, we discuss our 

results. Finally, we conclude by discussion of limitation and opportunities for future 

research. 
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3.2. Related Literature 

3.2.1. Content Diffusion on Social Networks 

In general, the issue of how contents spread on social networks has been studied as 

a diffusion problem (Yoganarasimhan 2012, Liu-Thompkins and Rogerson 2012, Katona, 

Zubcsek, and Sarvary 2011, Peters et. al. 2013). In addition, other studies considered 

diffusion pattern over social networks in different contexts such as online games. Main 

objectives of these studies were to examine effects of content, network structure, 

influencers, and seeding strategies on “adoption” decision of individuals in a social 

network. Examples of such adoption decisions are viewing a YouTube video, signing up 

for a social network, and gaming decisions. The main application of these studies is to 

design viral contents and campaigns. Considering the context of current research, where 

celebrities posting tweets through their social media accounts, we discuss existing literature 

on the effect of network structure, influencers, and content attributes on diffusion of content 

within social networks, and highlight the differences of current research with previous 

studies.  

The effect of network on diffusion of content has been examined in several 

dimensions. Yoganarasimhan (2012) studied size and structure of network around a node, 

and showed its causal effect on the diffusion of content distributed through that node in 

case of YouTube videos. She examined viewership of YouTube videos posted by different 

individuals over a month. By controlling video characteristics and network endogeneity in 

data structure, she concluded that first and second network around a node affect diffusion 

of content, where the first level accounts for initial growth, and the second level accounts 
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for further growth. She also found that strong relationships around a node reduce the overall 

diffusion, but increase the diffusion within the network. Susarla et al (2012) also considered 

diffusion of YouTube videos over a two-month period, and showed the effect of network 

size on diffusion rate through a modified Bass model. They also showed the effect of social 

influence and social interaction on diffusion of YouTube videos. In a different context, 

Katona, Zubcsek, and Sarvary (2011) made the same conclusion about the effect of 

network size and density by considering adoption decision of a social network in relation 

to individual’s network structure. They concluded that size of a network (number of 

connections) and density of the connections (how strong the connections are) have effects 

on individual’s decision. They also found a counterintuitive result about the effect of 

network size on influence, where they showed as the network size around nodes increases, 

their power to influence their network decreases, and it negatively affects diffusion of 

content from such nodes. Liu-Thompkins and Rogerson (2012) also made the same 

conclusion regarding the effect of network size and network density by considering 

YouTube data. In addition, they confirmed the inverted-U relationship between the effect 

of network density and diffusion. Contents will not spread too far in a dense network. 

Hence, diffusion is low for such networks. On the other hand, in a less dense network, the 

connections are weak, which results in less diffusion of content within these networks. 

However, there is an optimum for the network connectivity, which could lead to a higher 

diffusion. 

The role of influence of networks has been studies more extensively. Trusov, 

Bodapati, and Bucklin (2010) examined the login activity of individuals on a social 

network, and showed that there is heterogeneity across individuals in terms of influence on 
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their networks. They highlighted that a segment of “influencers” exists, which influences 

the behavior of individuals connected to them. Aral and Walker (2012) in a randomized 

experiment of a 1.3 million Facebook users examined the influence and susceptibility of 

individuals with respect to their demographics. They also found that influential users in a 

network are less susceptible, and using such cluster of influential users is effective to spread 

content in a network. Watts and Dodds (2007) challenged the idea of opinion leadership 

and influence in the sense that the spread of information to the opinion leader and from 

them to the general audience might not be as simple as discussed; therefore, a closer look 

is important on studying the effect of influencers. They suggest that besides the effect of 

influential people, there might exist “a critical mass of easily influenced individuals”, 

which subsequently affect another group of susceptible people.  

Clearly, contents posted on social media networks impact how individuals respond 

to them. de Vries et al (2012) considered the effect of content characteristics posted by 

brands on their fan pages on the number of “Likes” and “Comments”. They considered 

several aspects of content such as vividness, interactivity, and informational vs. 

entertainment on the two metrics. The found that a post with video increases number of 

likes, but inclusion of photo in a post does not have a significant effect. In addition, they 

found that a high level of interactivity such as a question affects number of likes negatively, 

but has a positive effect on number of comments. In the context of YouTube videos, Liu-

Thompkins and Rogerson (2012) showed that entertainment and educational content 

affects popularity and ratings of the videos.  

In the context of content diffusion on Twitter, Zaman et al. (2014) developed a 

model for predicting popularity of tweets in terms of retweet count and lifetime. Their 
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model was able to predict the popularity of tweets within few minutes of posting. However, 

they did not consider tweet content, and took into account very few tweets (52 tweets) for 

their research setting. In addition, they only considered tweets with less than 1800 overall 

retweet count due to data collection issues.  

Several new aspects of spread rate of content on social media have been addressed 

in this research. First, the previous research mainly focuses on UGC. In this research, we 

examine branded content, defined as contents originated from official social media 

accounts of celebrities. Clearly, there will be differences between content generated by 

ordinary individuals and contents posted by celebrities with millions of followers. 

Celebrities mainly post on social media in order to communicate with their followers, 

therefore, compared to UGC, celebrity originated content will be crafted more carefully, 

and with more advertising and branding purposes. Second, the size of celebrities’ networks 

is relatively large compared to average social media users, and they have strong 

relationships with their followers, which are rooted in their popularity and credibility on a 

different domain (offline world). Therefore, the inverted-U shaped effect of network size 

and structure that have been discussed in the literature may not hold for celebrities. Third, 

most of the previous studies considered YouTube videos and diffusion of “view” count 

over time. The diffusion of YouTube videos’ viewership is based on several factors such 

as recommended videos, friendship, subscribers, and traffic sources. However, the 

diffusion mechanism on Twitter is through individuals sharing tweets.   
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3.2.2. Celebrity Endorsement 

The effect of using celebrities for advertising purposes has been an extensive area 

of research in marketing and communication (for an extensive literature review see 

Erdogan 1999). Generally, the effects of communicating a message through celebrities on 

persuasiveness (Petty, Cacioppo, and Schumann 1983, Petty, Cacioppo and Goldman 

1981), brand recall (Kahle and Homer 1985), attitude (Kahle and Homer 1985), and 

purchase intention (Ohanian 1991) have been examined. In addition, the effect of celebrity 

on financial outcomes has been considered (Agrawal and Kamakura 1995). Several aspects 

of celebrities such as expertise, trustworthiness, and attractiveness have been put into 

examination. Expertise refers to knowledge and experience of celebrities in his/her field, 

while trustworthiness refers to credibility of the source in the subject of matter in the 

viewpoint of his/her audience in terms of having honesty in the matter. The attractiveness 

of celebrities consists of both physical attractiveness as well as non-physical attractiveness 

such as personality, lifestyle, or skills (Choi and Rifon 2012, Erdogan 1999). It has been 

shown that celebrity endorser’s attractiveness, trustworthiness, and expertise affect 

advertising effectiveness (Dholakia and Sternthal 1977), but they may not lead to purchase 

intention. For instance, Ohanian (1991) found that while trustworthiness and attractiveness 

are important constructs for effective communication, they do not affect purchase intention, 

and only expertise has a role. That could be due to the reason that individuals expect 

attractiveness from celebrities, and due to nature of endorsement being a paid commercial, 

they do not see the celebrity as trustworthy source to the product they are endorsing. 

In addition to the main effect of celebrity on communication effectiveness, many 

studies examined the “match-up” effect, where they examine a fit between celebrity and 
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the product he/she is endorsing is considered (Kahle and Homer 1985, Kamins 1990). 

Although there is no clear definition of “match” concluded in the literature, but the 

argument is that if such a fit exists between the celebrity and the product, the message will 

be more persuasiveness, and it enhances likeability and attractiveness of the celebrity as 

well (Kamins and Gupta 1994). In addition, other findings of the “fit” effect suggest that 

attractive celebrities will be more advantageous when the product category is meant for 

becoming attractive such as beauty products (Kahle and Homer 1985, Kamins 1990). Such 

findings lead to several research studies in order to characterize celebrity attributes such 

that their match with the product category could lead to higher ad effectiveness. In 

conclusion, the findings across several studies on the occasions where the fit of product 

and celebrity are appropriate, and what aspects of celebrities are leading to higher 

effectiveness are sparse. 

In the context of celebrities communicating message on social media, Jin and Phua 

(2014) showed that message promoted by celebrities with more followers affects product 

involvement, buying intention, and intention to spread eWOM. They also showed that 

celebrities with high number of followers are perceived as a more credible source in terms 

of attractiveness, trustworthiness, and competence. 
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3.3. Data 

Data of this research consist of the tweets posted by the celebrities in the “2014 The 

World’s Most Powerful Celebrities” published by Forbes, who have a twitter account and 

tweet in English (Forbes 2014). We only considered major celebrity categories and those 

related to the entertainment industry. Therefore, we did not consider “Director/Producer” 

and “Authors” celebrities in our sample. Table 3.1 provides number of celebrities, average, 

and median number of followers in each category. 

Table 3.1 – Average and median number of followers in the categories 

Category 
# of 

Celebrities 

Average # of 

Followers 

Median # of 

Followers 

# of 

Tweets 

Musicians 23 19,777,258 11,184,645 874 

Television actors/actress 8 6,621,265 5,057,503 257 

Actor/Actress 9 4,034,975 2,126,076 128 

Athletes 12 8,461,620 5,084,299 272 

Personalities 13 11,517,057 3,155,550 955 
 

Table 3.2 provides list of the celebrities in each category, their number of followers 

on twitter, number of tweets in our sample for each celebrity, as well as their rank in the 

published list by Forbes. We considered tweets posted by these celebrities in Table 3.2 

during the month of February 2015. We only considered original tweets by the celebrities 

(tweets originally posted by celebrities) and did not consider the “Reply” and “Retweet” 

tweets, since the reply tweets is not targeted to all followers, and retweets are not posted 

by celebrities, and sender of the tweet is someone else. Our final sample includes 2486 

tweets from 60 celebrities. Although our initial sample of celebrities include 65 celebrities, 

but due to having no activity during our observation period by few celebrities, our final 

sample includes 60 celebrities.   
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Table 3.2 – Celebrity names, number of followers and their other characteristics 

Rank Name 
# of 

Followers 
#twt Rank Name 

# of 

Followers 
#twt 

Musicians Actors/Actress 

#1 Beyonce Knowles 1.38E+07  #10 Robert Downey Jr 3.51E+06 4 

#3 Dr. Dre 2.37E+06 1 #23 Dwayne Johnson 8.14E+06 72 

#6 Jay-Z 3.09E+06  #52 Leonardo DiCaprio 1.20E+07 3 

#8 Rihanna 4.03E+07 38 #52 Matthew McConaughey 1.29E+06 2 

#9 Katy Perry 6.45E+07 38 #60 Mark Wahlberg 2.13E+06 4 

#13 Bon Jovi 1.60E+06 7 #63 Hugh Jackman 5.05E+06 42 

#13 Bruno Mars 1.99E+07 12 #67 Ben Affleck 1.64E+06  

#17 Miley Cyrus 1.91E+07 8 #89 Gwyneth Paltrow 2.06E+06 1 

#18 Taylor Swift 5.19E+07 45 #97 Cameron Diaz 5.30E+05  

#19 Lady Gaga 4.40E+07 61 Athletes 

#20 Kanye West 1.12E+07 38 #2 LeBron James 1.85E+07 53 

#21 Calvin Harris 5.39E+06 67 #7 Floyd Mayweather 5.56E+06 18 

#25 Bruce Springsteen 6.68E+05 1 #15 Kobe Bryant 6.19E+06 13 

#26 Justin Timberlake 4.12E+07 12 #16 Roger Federer 2.62E+06 9 

#28 One Direction 2.24E+07 78 #21 Tiger Woods 4.23E+06 1 

#29 Paul McCartney 2.22E+06 34 #24 Rafael Nadal 7.42E+06 19 

#31 Sean "Diddy" Combs 1.02E+07 244 #30 Cristiano Ronaldo 3.33E+07 8 

#33 Justin Bieber 6.00E+07 42 #33 Kevin Durant 9.19E+06 25 

#33 Jennifer Lopez 3.08E+07 102 #43 Novak Djokovic 3.85E+06 7 

#38 Pharrell Williams 5.59E+06 14 #55 Dwyane Wade 4.61E+06 59 

#47 Avicii 1.52E+06 12 #63 Maria Sharapova 1.48E+06 27 

#51 Toby Keith 8.41E+05 12 #69 Serena Williams 4.56E+06 33 

#70 Kenny Chesney 2.11E+06 8 Personalities 

Television actors/actress #4 Oprah Winfrey 2.66E+07 39 

#63 Ashton Kutcher 1.66E+07 9 #5 Ellen DeGeneres 3.87E+07 177 

#72 Neil Patrick Harris 1.33E+07 54 #31 Ryan Seacrest 1.32E+07 35 

#74 Kevin Spacey 3.83E+06 5 #39 Glenn Beck 9.38E+05 74 

#88 Bryan Cranston 1.72E+06 3 #42 Simon Cowell 1.13E+07 7 

#54 Sofia Vergara 7.17E+06 28 #45 Jimmy Fallon 2.08E+07 79 

#93 Kerry Washington 1.98E+06 112 #58 Gordon Ramsay 2.11E+06 52 

#96 Zooey Deschanel 6.29E+06 3 #59 Rush Limbaugh 4.38E+05  

#97 Lena Dunham 2.03E+06 43 #60 Jon Stewart 3.16E+06 75 

    #62 Howard Stern 1.60E+06 4 

    #80 Kim Kardashian 2.84E+07 131 

    #83 Dr. Phil McGraw 1.36E+06 101 

    #86 Sean Hannity 1.08E+06 181 
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3.3.1. Dependent Variable 

The variable of interest in this research is the retweet rate. In order to construct this 

variable, we observed the numbers of retweets for the tweets posted by the celebrities listed 

in Table 3.2, approximately every 15 minutes during the first 24 hours of the tweet life. 

The only exception from this data collection pattern is right after posting the tweet. Since 

the API requests for the retweet count for all tweets are made every 15 minutes 

(approximately), the first observation for every new tweet posted in between API requests 

will be made in proceeding API call, hence making the first period of observation to be 

less than 15 minutes. One possible issue with this observation pattern is that the time 

window of the first period might be significantly less than 15 minutes; hence, its retweet 

rate may not be comparable to the other periods, which are approximately 15 minutes. In 

order to overcome this issue, we combined the first and the second periods of observation. 

Therefore, the time window for the first period is approximately between 15 minutes and 

30 minutes. All other time intervals will be approximately 15 minutes. However, we 

observed the exact timestamp of API calls, therefore, we take the exact length of the 

interval into account in our modeling approach. Figure 3.1 shows a visual perspective of 

 

 
Figure 3.1 – A graphical representation of data collection algorithm 
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the data collection algorithm. Tweet 𝑖 has been observed across 𝐾𝑖 intervals, and at every 

observation points, 𝑡𝑘, 𝑘 = 1 … 𝐾𝑖, the cumulative retweet count has been observed, hence 

the retweet count in each interval has been constructed by subtracting retweet count in two 

consecutive observations points. Table 3.3 shows the number of intervals across all tweets. 

Figure 3.2 presents histogram of 𝑁𝑖(𝑡𝑘) across all tweets and all intervals, where 𝑁𝑖(𝑡𝑘) is 

retweet count of tweet 𝑖 = 1 … 𝑆 at interval 𝑡𝑘, 𝑘 = 1 … 𝐾𝑖, where 𝑆 is the sample size, and 

𝐾𝑖 is the number of observed intervals for tweet 𝑖. 

Table 3.3 – Frequency of number of intervals observed for the tweets 

Number of Intervals 82 83 84 85 86 87 88 89 90 91 

Frequency 56 26 3 3 2 2 55 647 1676 16 
 

 

 

Figure 3.2 – Histogram of Log(observed count) across all intervals and all tweets 
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3.3.2. Tweet Characteristics 

The variables that we want to examine its effect on the retweet rate are observed 

across different levels. We have tweet level covariates as well as celebrity level covariates. 

Below, we provide description of the covariates. Table 3.4 provides summary statistics of 

the covariates discussed below. 

- HTTP: this is a dummy variable indicating presence of a link in a tweet 

- HTTP_FB: if the link was directed to a Facebook page 

- HTTP_YT: if the link was directed to a YouTube page 

- HTTP_INS: if the link was directed to an Instagram image 

- TWITTER_PHOTO: this is an indicator variable, which will take the value of one, if 

the tweet has one or more twitter images attached to it 

- HASH: an indicator variable for the presence of hashtag in a tweet 

- QUEST: an indicator variable for the presence of question mark in a tweet 

- EXCL: an indicator variable for presence of exclamation mark in a tweet 

- NUM_EXCL: the number of exclamation marks that are used in a tweet 

- SB: an indicator variable if the content includes the words “SB49” or “Super Bowl” 

either directly or through a hashtag 

- CATG_ATH: an indicator variable for the tweets that have been posted by an “athlete” 

- SB_TIME: an indicator variable for the tweets that have been posted while Super Bowl 

49 was in progress 

- GR: an indicator variable if the content includes the word “Grammy” either directly or 

through a hashtag 
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- CATG_MUS: an indicator variable for the tweets that have been posted by a 

“musician” 

- GR_TIME: an indicator variable for the tweets that have been posted while Grammy’s 

award was in progress 

- OS: an indicator variable if the content includes the word “Oscar” either directly or 

through a hashtag 

- CATG_ACT: an indicator variable if the tweet is posted by either of the 

“Actor/Actress”, “TV Actor/Actress”, or “Personalities” 

- OS_TIME: an indicator variable for the tweets that has been posted while Oscar’s was 

in progress 

3.3.3. Celebrity Characteristics 

In addition to tweet level covariates, we included a celebrity specific variable into 

our model, where we measured celebrities’ number of followers (NUM.FOL). In addition, 

we controlled for their unobserved characteristics through random effects.  

  



www.manaraa.com

89 

 

Table 3.4 – Summary statistics of the covariates 
 

 
Yes No 

HTTP 1130 1356 

  No Yes  

HTTP_FB 1120 10  

HTTP_INS 575 555  

HTTP_YT 1032 98  

TWITTER_PHOTO 594 1892 

HASH 1380 1106 

SB 25 2461 

CATG_ATH 22 3  

SB_TIME 19 6  

GR 61 2425 

CATG_MUS 28 33  

GR_TIME 53 8  

OS 97 2389 

CATG_ACT 23 74  

OS_TIME 88 9  

QUEST 262 2224 

EXCL 870 1616 

 NUM.EXCL Frequency  

 1 609  

 2 83  

 3 106  

 4 32  

 5 21  

 6 6  

 7 6  

 8 3  

 9 1  

 14 1  

 18 1  

 20 1  
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3.4. Modeling approach 

Since we observed retweet count across multiple intervals during the first 24 hours 

of tweet’s lifetime, we considered a Modulated Poisson Process model (Soyer and 

Tarimcilar 2008) that accounts for tweet characteristics and the nature of the process. 

Specifically, let 𝑁𝑖𝑗(𝑡𝑘) to be observed number of retweets for tweet 𝑖 = 1 … 𝑁𝑗 posted by 

celebrity 𝑗 = 1 … 𝐽, occurred in the time interval [𝑡𝑘−1, 𝑡𝑘], 𝑘 = 1 … 𝐾𝑖. Since the number 

of retweets occurred during each interval across the lifetime of a tweet decreases, hence, 

the counting process is a non-homogeneous Poisson process with rate of 𝜆𝑖𝑗(𝑡𝑘). The 

𝑁𝑖𝑗(𝑡𝑘) follows a Poisson distribution with mean of 𝐸 (𝑁𝑖𝑗(𝑡𝑘)) as below, where 𝐸(. ) is 

expectation function. 

𝐸 (𝑁𝑖𝑗(𝑡𝑘)) =  ∫ 𝜆𝑖𝑗(𝑢) du

𝑡𝑘

𝑡𝑘−1

= Λ𝑖𝑗(𝑡𝑘) − Λ𝑖𝑗(𝑡𝑘−1) 

where 
dΛ

du
= 𝜆. In order to incorporate effects of both tweet characteristics and time, we 

specify 𝜆𝑖𝑗(𝑡𝑘), rate of the Poisson process, as a function of time and tweet characteristics, 

as, 

𝜆𝑖𝑗(𝑡𝑘) = 𝜆0(𝑡𝑘) 𝑒𝜇𝑖𝑗. 

The first component, 𝜆0(𝑡𝑘), captures baseline behavior of retweet rate at 𝑘th 

interval, and the second component, 𝑒𝜇𝑖𝑗, captures the effect of tweet 𝑖 characteristics from 

celebrity 𝑗, which will be linked to covariates subsequently. This specification captures 
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effects of time elapsed after tweet has been posted, tweet and celebrity characteristics. By 

considering this specification, we can write Λ𝑖𝑗(𝑡𝑘) as follows. 

Λ𝑖𝑗(𝑡𝑘) = Λ0(𝑡𝑘) 𝑒𝜇𝑖𝑗 

The specification of Λ0(𝑡𝑘) is critical, since it captures the underlying behavior of 

retweet rate across time. Figure 3.3 provides average of observed retweet count of tweets 

posted by a celebrity (Kanye West) in our sample across the first 24 hours after posting. 

 

Figure 3.3 – Average retweet rate of a celebrity in our sample 

Clearly, it can be seen that retweet rate has a decreasing pattern, such that after a 

tweet has been posted, it generates substantive amount of retweet, and subsequently will 

decline to a smaller rate. In order to capture such behavior, we choose a power law function 

for the baseline of retweet rate as below. This function has two parameters and captures 

both shape and scale of such decreasing function.  
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Λ0(𝑡𝑘) = 𝛾 𝑡𝛼 

Based on the above specification, we can examine this assumption and its 

suitability. By taking the logarithm of both sides, we will get log Λ0(𝑡𝑘) = log(𝛾) +

𝛼 log (𝑡). By making the scatter plot of log(cumulative number of retweets) and log(time), 

we could verify this linear relationship. Figure 3.4 shows scatterplot of cumulative retweet 

count and time (both in log scale) for a celebrity (Kayne West) with a linear fit in solid red. 

 
Figure 3.4 – Scatterplot of Log(Cumulative Count) vs. Log(time) 

 

Clearly, it can be seen that there is a linear relationship between the two and least 

square line captures this relationship. Hence, the power law assumption for the baseline 

retweet rate is suitable. It should be note that slope of the fitted line (in red) is the shape of 

power law function, 𝛼. However, there might be differences between celebrities in terms 
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of how their tweets spread on social network. Therefore, we make the shape parameter of 

power law function to be celebrity specific. Therefore, the baseline will be, 

Λ𝑗
0(𝑡𝑘) = 𝛾 𝑡𝛼𝑗 where 𝛼𝑗  ~ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) 

In addition, as it can be seen from Figure 3.4, there are significant differences 

between the tweets in terms of their retweet rate, which will be captured by including 

covariates into the model. However, there might be unobserved tweet characteristics that 

have not been captured by the observed tweet characteristics. In order to incorporate such 

effects, we specify the scale parameters of the baseline retweet rate, 𝛾 with respect to tweet 

specific covariates, hence we have 𝛾𝑖𝑗 for tweet 𝑖 posted by celebrity 𝑗, which will be 

specified as follows,  

log(𝛾𝑖𝑗) = 𝜙 + 𝜖𝑖𝑗 

The first component, 𝜙, acts as the baseline scale (intercept) of the model, and the 

second component, 𝜖𝑖𝑗, is the random effect, which captures tweet heterogeneities. We 

assume a normal distribution with a zero mean and an unknown precision parameter, 𝜏𝜖 

for the random terms as below, 

𝜖𝑖𝑗~𝑁(0, 𝜏𝜖) 

In order to include tweet characteristics into our model to examine what affects the 

retweet rate, we will write the tweet specific part of Λ𝑖𝑗(𝑡𝑘) with respect to covariates 

described in section 3.3.2. In specific, we write the 𝜇𝑖𝑗 with respect to observed 

characteristics of the tweets as follows. 



www.manaraa.com

94 

 

𝜇𝑖𝑗 = 𝐻𝑇𝑇𝑃𝑖(𝛽1 +  𝛽2 𝐻𝑇𝑇𝑃_𝐹𝐵𝑖 + 𝛽3𝐻𝑇𝑇𝑃_𝐼𝑁𝑆𝑖 + 𝛽4𝐻𝑇𝑇𝑃_𝑌𝑇𝑖)

+  𝛽5𝑇𝑊𝐼𝑇𝑇𝐸𝑅_𝑃𝐻𝑂𝑇𝑂𝑖 +  𝛽6𝐻𝐴𝑆𝐻𝑖 + 𝛽7𝑄𝑈𝐸𝑆𝑇𝑖

+ 𝐸𝑋𝐶𝐿𝑖(𝛽8 + 𝛽9𝑁𝑈𝑀_𝐸𝑋𝐿𝐶𝑖)

+ 𝑆𝐵𝑖 (𝛽10 + 𝛽11𝐶𝐴𝑇𝐺_𝐴𝑇𝐻𝑖 + 𝛽12𝑇𝐼𝑀𝐸_𝑆𝐵𝑖)

+ 𝐺𝑅𝑖 (𝛽13 + 𝛽14𝐶𝐴𝑇𝐺_𝑀𝑈𝑆𝑖 + 𝛽15𝑇𝐼𝑀𝐸_𝐺𝑅𝑖)

+ 𝑂𝑆𝑖 (𝛽16 + 𝛽17𝐶𝐴𝑇𝐺_𝐴𝐶𝑇𝑖 + 𝛽18𝑇𝐼𝑀𝐸_𝑂𝑆𝑖) + 𝐶𝐸𝐿𝐸𝐵𝑅𝐼𝑇𝑌𝑗 

In this specification, the main effect of including a link in a tweet, 𝐻𝑇𝑇𝑃, is 

captured by 𝛽1, while the effect of including specific links to Facebook, Instagram or 

YouTube are captured through 𝛽2, 𝛽3, and 𝛽4, which should be interpreted as a shift from 

𝛽1. The effect of including exclamation mark is captured through 𝛽8, while 𝛽9 captures its 

interaction effect with the number of exclamation marks to control for the case of using 

excessive exclamation marks. For the case of Super Bowl, Grammy, and Oscars, we 

included a main effect of using content related to each of these events. In addition, we 

included an interaction term to examine the effect of using such content with the celebrity 

posting that who is in the same category, and using such content during the time that the 

related event is in progress. The 𝐶𝐸𝐿𝐸𝐵𝑅𝐼𝑇𝑌𝑗 is the effect of the celebrity who posted 

tweet 𝑖. We specify the celebrity effect with respect to the celebrity’s number of followers 

as below. We also included a celebrity specific random effect, 𝛿𝑗  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜏𝛿) in our 

model to capture the unobserved characteristics of the celebrities. Therefore, we have, 

𝐶𝐸𝐿𝐸𝐵𝑅𝐼𝑇𝑌𝑗 = 𝑁𝑈𝑀. 𝐹𝑂𝐿𝑗  𝛽19 + 𝛿𝑗  ,       𝑗 = 1 … 60  
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3.4.1. Likelihood Function 

The likelihood function is as below, where 𝜇𝑖, Λ0(𝑡𝑘) are specified as above. 

𝐿(𝑁𝑖(𝑡𝑘)|𝜇𝑖 , 𝛾𝑖 , 𝛼) ∝  
 (Λ𝑗

0(𝑡𝑘) 𝑒𝜇𝑖  −  Λ𝑗
0(𝑡𝑘−1) 𝑒𝜇𝑖)

𝑁𝑖𝑗(𝑡𝑘)

𝑁𝑖𝑗(𝑡𝑘)!
 

3.4.2. Model Estimation 

We estimated our model in Bayesian framework through BUGS software. We 

employed a Normal distribution with zero mean and large variance for the coefficients of 

the covariates, and scale of the baseline, 𝜙. We used 𝐺𝑎𝑚𝑚𝑎(0.001,0.001) for 𝑎 and 𝑏, 

random effect distribution of shape in the power law specification, and precision 

parameters of brand random effect (𝜏𝛿), and tweet random effect (𝜏𝜖). 

3.4.3. Model Comparison 

In addition to the model we discuss above, we also examined several modifications 

of the above model in order to select a model that represents our data better. Therefore, we 

evaluate each model in terms of DIC and select the model with the lowest DIC. 

3.5. Results 

Based on estimated DIC, the proposed model does well in terms of fit compared to 

the two reduced versions of the proposed model. Next, we present estimates of this model. 

Table 3.5 – Model Comparison Results 

 Model DIC 

Proposed model 2433740 

Proposed model with constant 𝛼 for all celebrities 2775450 

Proposed model without celebrity random effects (𝛿𝑗)   2433789 
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Table 3.6 shows estimated mean, median and 95% probability intervals of the model 

coefficients. Based on 95% credible intervals, presence of link in a tweet, HTTP, has a 

significant negative effect on retweet rate. However, the interaction effect of HTTP with a 

Facebook link (HTTP_FB) and YouTube link (HTTP_YT) is significant and positive. We 

should note that links types are included as interaction terms, and their estimated 

coefficients should be interpreted as shift from the main effect of HTTP. Therefore, since 

the mean main effect of HTTP is negative (-0.60), their positive effects (HTTP_FB 0.49 

and HTTP_YT 0.27) will enhance the negative effect of link, but the overall effect still will 

be insignificant or negative. On the other hand, the interaction of HTTP with HTTP_INS 

is negative and significant, which means presence of Instagram link will make the effect 

even more negative. In general, the estimated coefficients of HTTP and their types suggest 

that presence of link will have a negative effect on retweet rate, and the link type makes 

the effect to be more or less negative. This result could be due to receivers of tweet 

interacting with the link (Noort et al. 2012, Liu and Shrum 2002), which makes the tweet 

not to be the focal point of the communication. In other words, individuals interact with 

the tweet by clicking on the link, which subsequently displays a webpage, an Instagram 

photo, or a YouTube video, and as a result, it reduces engagement with the tweet content 

and message, hence reduces the retweet rate. In addition, content of the link might affect 

individual’s decision to share the content. Presence of photo in a tweet 

(TWITTER_PHOTO) has a significant positive effect on retweeting rate. Obviously, 

including a photo increases the engagement with the tweet, and draws the attention to the 

tweet and its text. Hence, it makes the tweet to stand out and increases the retweet rate.  
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Table 3.6 – Estimated coefficients of the covariates 

 Variable Mean 2.5% Median 97.5% 

𝛽1 HTTP ** -0.60 -0.72 -0.60 -0.50 

𝛽2 HTTP × HTTP_FB ** 0.48 0.04 0.49 0.88 

𝛽3 HTTP × HTTP_INS ** -0.16 -0.27 -0.16 -0.01 

𝛽4 HTTP × HTTP_YT ** 0.27 0.10 0.27 0.43 

𝛽5 TWITTER_PHOTO ** 0.21 0.13 0.20 0.32 

𝛽6 HASH ** -0.15 -0.20 -0.15 -0.11 

𝛽7 QUEST ** -0.11 -0.22 -0.11 -0.01 

𝛽8 EXCL ** -0.23 -0.30 -0.23 -0.10 

𝛽9 EXCL × NUM_EXCL 0.03 -0.01 0.03 0.05 

𝛽10 SB -0.05 -0.50 -0.03 0.32 

𝛽11 SB × CATG_ATH ** 0.97 0.01 0.93 2.12 

𝛽12 SB × TIME_SB ** 0.79 0.09 0.80 1.63 

𝛽13 GR 0.16 -0.24 0.18 0.48 

𝛽14 GR × CATG_MUS -0.20 -0.58 -0.19 0.26 

𝛽15 GR × TIME_GR ** 0.57 0.01 0.58 1.25 

𝛽16 OS 0.36 -0.03 0.37 0.71 

𝛽17 OS × CATG_ACT -0.07 -0.48 -0.05 0.25 

𝛽18 OS × TIME_OS ** 0.87 0.36 0.84 1.61 

𝛽19 NUM.FOL ** 1.30 1.22 1.30 1.36 
 

 

Presence of hashtag in a tweet (HASH) has a significant negative effect on retweet 

rate. Hashtags are another tweet component that individuals could interact with them. 

Receivers of the tweets could click on a hashtag and check out other tweets related to that 

hashtag. Therefore, presence of hashtag reduces the engagement with the tweet through 

drawing attention away from the tweet. However, by comparing the effects of hashtag and 

link, we could see that the effect of hashtag (-0.15) is less negative compared to the effect 

of link (-0.60). Presence of question mark, QUES, also has a negative significant effect on 

retweet rate, possibly due to the effort required to make it ready for retransmission. 

Presence of exclamation mark has a significant negative effect on retweet rate, and its 

interaction with number of exclamation has a positive effect, but it is not significant. This 

effect might be due to attractiveness and attention grabbing of the excessive use of 
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exclamation mark, which signals sense of urgency and attention. Among the event related 

variables, none have a significant effect, but the effect of Oscar and Grammy related 

content (OS and GR) is positive. The interaction effect of celebrities’ categories and the 

event is only significant in the case of Super Bowl. However, an interesting result is for the 

case of interaction of event related content and event timing. For all three cases, the 

interaction effect is significant and positive, which means a tweet related to these event 

will have a higher retweet rate when it is posted during the time that event is in progress. 

The reason behind this pattern might be that the tweet content is specifically about what is 

going on during the event; therefore, it will have a higher benefit for receivers to share that 

tweet. The effect of number of followers is also positive and significant, which means more 

number of followers will lead to a higher retweet rate. This can be due to the reason that 

more individuals are receiving the tweet, so it will have a higher retweet rate.  

Table 3.7 – Other parameters of the model 

 Mean 2.5% Median 97.5% 

�̅� – Mean Shape of Power Law Function 0.19 0.18 0.19 0.20 

𝑉𝑎𝑟𝛼– Variance of Shape in Power Law Function 0.00 0.00 0.00 0.00 

𝜙 – Scale of Power Law Function 5.05 5.01 5.04 5.11 

𝜏𝜖 – Precision of Tweet Random Effect 1.45 1.37 1.45 1.53 

𝜏𝛿 – Precision of Celebrity Random Effect 0.63 0.41 0.62 0.87 
 

 

Table 3.7 includes parameters of the model other than the coefficients of the 

regression. Mean of the power-law shape parameters across celebrities in the Poisson rate 

is 0.19, and its variance is less than 0.01. Figure 3.5 shows the boxplots of shape parameters 

across all celebrities. A larger value of shape parameter means that tweet will have a higher 

growth rate of retransmission count across its lifetime. The precision parameter of tweet 

random effects is 1.46. However, the precision parameter of celebrity random effects, 𝜏𝛿, 
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is 0.65, which is relatively small, and it signals there are unobserved characteristics other 

than their number of followers that affect retweet rate. Figure 3.6 shows the boxplot of 

posterior estimates for celebrity random effects. It is interesting that for some celebrities in 

the positive side of the boxplot, such as “One Direction” or “Justin Bieber”, the number of 

followers is also large. For example, for the mentioned celebrities, numbers of followers 

are 22 and 60 million respectively, which is a relatively large number of followers 

compared to other celebrities. 
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Figure 3.5 – Boxplot of the estimated power-law shape parameter across celebrities 
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Figure 3.6 – Boxplot of the estimated celebrity random effects in the scale parameter of 

power law function 
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3.6. Discussion 

In this research, we considered tweets posted by multiple celebrities, and observed 

number of retweets in several fifteen minutes intervals across first 24 hours of tweets life. 

We investigate the effect of tweet and celebrities characteristics on retweeting rate through 

a non-homogeneous Poisson process model. Findings suggest that presence of link and 

hashtag reduces retweet rate, while presence of photo increases the retweet rate. Links and 

hashtags are two components of a tweet that receivers can interact with and explore further 

contents through this interaction. Therefore, in the Twitter context, this result suggests that 

interactive contents could potentially draw attention away from the content, and therefore 

reduce the rate that individuals respond to them, specifically, in the case of retweeting. 

However, previous findings in the context of web browsing concluded that interactive 

content could increase satisfaction and effectiveness, and generally, interactivity leads to a 

better flow, which enhances the overall experience (Noort et al. 2012, Liu and Shrum 

2002). Despite these findings, our findings suggest that interactivity in the case of Twitter 

might have a negative effect on retweet rate. This result could be due to nature of Twitter, 

since Twitter emphasizes short text (up to 140 characters), and it is meant for fast 

transmission of messages. It is not an information rich medium, and level of involvement 

with a tweet is relatively low. This result may not hold in the case of other social networks 

such as Facebook or Instagram, since they are content rich, and engagement with a 

particular content is higher that a tweet. In addition, we examined the role of event related 

content and its match with celebrity type as well as event timing. Our results suggest that 

event related content would have a higher retweet rate if it were posted during that event. 

The reason behind such effect may root in individual’s presence on social media, once the 
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event is in progress, hence, more people will see the tweet, and it increases the retweet rate. 

In addition, this effect could be due to relevance of the tweet content with the event, and 

the benefit that individuals might gain by retweeting that, whereas after the event and once 

everything is finished, the utility through sharing the content will not be gained.  

3.6.1. Managerial Implications 

Findings from this research have implication across several dimensions: content 

strategy on Twitter, celebrity selection for marketing purposes, and event related 

marketing. We demonstrated that while more interactive content such as a link or hashtag 

may increase the information that a tweet carries, but it might have a negative effect on the 

retweet rate, due to drawing attention away from the tweet to the hashtag or link. This could 

have important implications for marketing purposes and specifically content marketing. In 

the case of promoting a tweet with the goal of higher retweet rate, the focus should be the 

message content and even an image could be attached since it increase engagement but 

does not reinforce interaction. The implication of content engagement and interaction could 

be beyond Twitter, and it applies to other social networks such as Facebook or Instagram, 

although involvement level is higher for those social networks, and these effects may not 

be prominent. Our research also provides insight for firms about the effect of celebrities’ 

number of followers and their unobservable characteristics, on how fast tweets posted by 

them are retransmitted. These insights can be employed for celebrity selection for 

marketing purposes. In addition to insights on celebrity and content, our research also 

shows the effect of event related content and event timing. It suggests that chance of 

retweeting will be higher if an event related content is posted during the events. This insight 
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suggests that carefully planned campaigns for events could increase the spread rate of the 

content posted about that event, which subsequently affects brands reach and exposure. 

3.6.2. Limitation, and Future Research 

The limitations of this research are data collection pattern and its context. We only 

considered first 24 hours of tweets life, and tweets might show significant changes in their 

retweet pattern after a day, since tweets will diffuse deeper and wider into social networks, 

and that affects subsequent pattern of retweets. In addition, we only considered well-known 

celebrities, which bounds out inferences to these types of celebrities. For instance, a 

celebrity, who is famous to his/her niche followers, and is not a widely well-known 

celebrity, might have less number of followers compared to well-known ones, but due to 

their popularity within their niche, he/she might have a higher influence on their followers, 

and be more effective on sponsoring tweets for brands. Therefore, future research could 

investigate differences between well-known celebrities and “micro-celebrities” in terms of 

their influence on their followers. In addition, investigating the retweet rate across multiple 

categories and brands could provide more insight for branding purposes. One more area 

that could be a venue for future research is to consider the effect of interactive content and 

flow on social media, and investigate how it increase or reduces effectiveness of social 

media contents. In addition, generalizing our results to other social networks could be also 

insightful.  
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